ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ
УНИВЕРЗИТЕТА У БАЊОЈ ЛУЦИ

СКУП

Волумен 8 (1)
Бања Лука, 2017.
Abstract

PEŠEVIĆ, Dušica, M. MARKOVIĆ, S. MITRIĆ: PERSISTENT ORGANIC POLLUTANTS IN BOSNIA AND HERZEGOVINA – THE IMPORTANCE OF IMPLEMENTATION OF THE STOCKHOLM CONVENTION [University of Banja Luka, Faculty of Natural Sciences and Mathematics, Mladena Stojanovića 2, 78000 Banja Luka, Republic of Srpska, Bosnia and Herzegovina; University of Banja Luka, Faculty of Agriculture, Bulevar vojvode P. Bojovića 1a, 78000 Banja Luka, Republic of Srpska, Bosnia and Herzegovina]

Persistent organic pollutants (POPs) substances are a group of chemical compounds of different origin and similar physical and chemical characteristics which have adverse effects on the environment and human health. POPs have different degrees of resistance to photochemical, biological and chemical degradation, and once released in the environment they remain unchanged for extended periods. Persistent organic pollutants include three groups of organic compounds: organochlorine pesticides, industrial chemicals and by-products of the production process and combustion. Some representatives of this group of compounds, particularly pesticides, are accepted unconditionally the first years of their application but the interest in their use decreases after learning about their harmful effects on the environment and human health. Due to the fact that they often can be found at higher levels in the regions where they were never used, their management and control requires a global approach. One such international instrument in this regard that was ratified by Bosnia and Herzegovina in 2010 is the Stockholm Convention, whose main objectives are: to prohibit or reduce the production, use, emissions, import and export of persistent organic pollutant matters, and to protect human health and the environment. In Bosnia and Herzegovina there has not been any organized comprehensive monitoring of POPs compounds from the environment, food and human samples. On the basis of mainly international projects, we have found increased concentrations of individual compounds belonging to the group of persistent organic contaminants in a number of locations throughout Bosnia and Herzegovina and we present them in this paper. The level of knowledge about POPs compounds and their negative impact on the environment and human health is relatively low and in the near future it is necessary to launch national education programs and education of the population.

Key words: Persistent organic pollutants (POPs), environment, Bosnia and Herzegovina, Stockholm Convention
Саждак

Перзистентне органске загађујуће материје (Persistent Organic Pollutants, POPs) представљају групу хемијских једињења различитог поријекла и сличних физично-хемијских карактеристика који имају штетно дејство на животну средину и људско здравље. POPs су у различитом степену отпорни на фотохемијску, биолошку и хемијску деградацију, па једном ослобођене у животној средини остају неизмијењене изузетно дуг временски период. Перзистентни органички полутанти обухватају три групе организних једињења: органохлорне пестициде, индустријске хемикалије и споредне продукте процесса производње и сагорјевања. Неки представници ове групе једињења, посебно пестицида, првих година њихове примјене безрезерво су прихваћени, да би се интересовање за њихову примјену смањило након сазнања о њиховим штетним последицама по животну средину и људско здравље. Због чињенице да се често могу наћи на повишеним нивоима у регионима у којима никад нису били у употреби, њихово управљање и контрола захтиева глобални приступ. Један такав међународни инструмент у том погледу, који је ратификовала Босна и Херцеговина 2010. године, је Штокхолмска конвенција чији су основни циљеви: забранити или смањити производњу, употребу, емисију, увоз и извоз перзистентних органских загађујућих материја, ради заштите здравља људи и животне средине. У Босни и Херцеговини није организован свеобухватајући мониторинг нивоа POPs једињења у узorcима из животне средине, храни и људи. На основу спроведених, углавном међународних пројеката утврђене су повећане концентрације појединих једињења која припадају группи перзистентних органских полутаната на већем броју локација широм Босне и Херцеговине, које смо презентовали у овом раду. Ниво сазнања о POPs једињењима и њиховом негативном утицају на животну средину и здравље људи на релативно ниском нивоу, те је у блиској будућности потребно покренути националне програме едукације и образовања становништва.

Кључне ријечи: перзистентни органски полутанти (POPs), животна средина, Босна и Херцеговина, Штокхолмска конвенција

УВОД

Перзистентне1 (дуготрајне или постојане) органске загађујуће супстанце (Persistent Organic Pollutants, POPs) могу се дефинисати као органске хемијске материје које поседују посебне комбинације особина која, једном ослобођене у животној средини, остају неизмијењене изузетно дуг период (отпорни на процес разградње). Имају способност ширења путем ваздуха и воде, као и кроз биолошке системе, те путем ланца исхране доспјевају у живе организм и преносе се из карике у карику уз биоакумулацију и биомагнификацију 2, акумулирају се у масном ткиву организма, при чему се највеће концентрације могу наћи на вишем нивоима у ланцу исхране (Табеле 1 и 2) (Ferreira, 2008: http://www.epa.gov/oppead1/safety/healthcare/handbook/Chap06.pdf). Због наведених особина перзистентни органички полутанти (POPs) припадају далеко широј групи хемикалија, које се називају перзистентне токсичне супстанце (Persistent Toxic Substances—PTS), а убрајају се и у перзистентне, биоакумулативне токсичне загађујуће супстанце (Persistent, Bioaccumulative, and Toxic (PBT) Pollutants).

1 Супстанце које су перзистентне, односно резистентне (отпорне) на процесе разлагања, тј. луго постојане у животној средини, по правилу представљају потенцијално опасне екотоксиканте (примjer: пестицид Мирекс у језерима Онтарија – измерjen висок садржај пестицида у диведесетим, а производња престала у седамдесетим...) 2 Биомагнификација се описује као процес накупљања одређених супстанца у организмима животних бића у далеко већим концентрацијама него што су концентрације истих супстанца у храни датих организама.
POPs супстанце су углавном органохлорна јединиња која при доспијевању у ланце исхране трују животине и човека, односно изазивају разне здравствене тежине и промјене у организмима (алергије, оштетљење централног и периферног нервног система, репродуктивне поремећаје, имунолошког система, карцином, и др.). Због својства дјелимично испарљивости налазе се у облику паре или се адсорбују на честице у атмосфери, те тако штетно дјелују на животну средину и људско здравље (Ferreira, 2008; Moeckel и сар., 2008). Транспортују се кроз атмосферу на велике удаљености, тако што у топлијим регионима испаравају, а затим носени ваздушним масама доспијевају у хладнија подручја (у близини полова и на полове), где се кондензују и у виду падавина враћају на земљиште, далеко од свог мјеста испуштања, те се тамо акумулирају у копненим и водним екосистемима (Nizzetto и сар., 2010; Gai и сар., 2014; Moeckel и сар., 2008).

Табела 1. Преглед показатеља перзистентности за разврставање супстанци у POPs и PBT супстанце (измијењено из: Hazardous substances of environmental concern – what does that mean? www.chemicals.befgroup.net/assets/HS_eng_Final1.pdf)

<table>
<thead>
<tr>
<th>Врста и извор критеријума</th>
<th>Вrijедност критеријумског фактора</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNECE POPs протокол 1</td>
<td>Полуживот у вodi > 60 дана, седименту > 180 дана, земљишту > 180 дана или други евидентни докази о перзистентности хемикалије</td>
</tr>
<tr>
<td>OSPAR PBT критеријум 2</td>
<td>Полуживот у вodi ≥ 50 дана</td>
</tr>
<tr>
<td>UNEP POPs конвенција</td>
<td>Полуживот у вodi > 60 дана, седименту > 180 дана, земљишту > 180 дана или други евидентни докази о перзистентности хемикалије</td>
</tr>
<tr>
<td>EU PBT критеријум REACH 3</td>
<td>Полуживот у морској вodi > 60 дана, слатководној вodi > 40 дана, морском седименту > 180 дана, слатководном седименту > 120 дана, земљишту 120 дана</td>
</tr>
<tr>
<td>EU vPvB критеријум REACH 3</td>
<td>Полуживот у морској вodi или слатководној вodi > 60 дана, морском или слатководном седименту > 180 дана, земљишту 180 дана</td>
</tr>
<tr>
<td>CEPA 4</td>
<td>Полуживот у вodi ≥ 180 дана; у седименту ≥ 365 дана и земљишту ≥ 180 дана</td>
</tr>
<tr>
<td>US EPA – Акт за контролу</td>
<td>Полуживот у воденој околнини > 60 дана</td>
</tr>
<tr>
<td>US EPA – Забрана</td>
<td>Полуживот у воденој околнини > 180 дана</td>
</tr>
</tbody>
</table>

1998 Aarhus Protocol on Persistent Organic Pollutants
2 Convention for the Protection of the Marine Environment of the North-East Atlantic
3 Based on CLP Regulation (EC) No 1272/2008
4 Canadian Environmental Protection Act

Табела 2. Преглед показатеља биоакумулације за разврставање супстанци у POPs и PBT супстанце (измијењено из: Hazardous substances of environmental concern – what does that mean? www.chemicals.befgroup.net/assets/HS_eng_Final1.pdf)

<table>
<thead>
<tr>
<th>Врста и извор критеријума</th>
<th>Вrijедност критеријумског фактора</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNECE POPs протокол 1</td>
<td>BCF > 5000 или BAF > 5000 или log K<sub>OW</sub> > 5</td>
</tr>
<tr>
<td>OSPAR PBT критеријум 2</td>
<td>log K<sub>OW</sub>≥4 или BCF≥500</td>
</tr>
<tr>
<td>UNEP POPs конвенција</td>
<td>BCF > 5000 ili BAF > 5000 ili log K<sub>OW</sub> > 5 или други докази који указују на забринутост, или на основу података из мониторинга који указују на биоакумулациони потенцијал</td>
</tr>
<tr>
<td>EU PBT критеријум REACH 3</td>
<td>BCF > 2000</td>
</tr>
</tbody>
</table>
Душица Пешевић, Михајло Марковић, Синиша Митрић

<table>
<thead>
<tr>
<th>ЕУ вPvB критеријум REACH</th>
<th>BCF > 5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEPA</td>
<td>BCF ≥ 5000 или BAF ≥ 5000 или log K_{OW} ≥ 5</td>
</tr>
<tr>
<td>US EPA – Акт за контролу</td>
<td>BCF > 1000</td>
</tr>
<tr>
<td>US EPA – Забрана</td>
<td>BCF > 5000</td>
</tr>
</tbody>
</table>

BCF= Биоконцентрацијски фактор; BAF= Биоакумулацијски фактор; K_{OW}= Коефицијент октанол вода

Због чињенице да се често могу наћи на повишеним нивоима у регионима у којима никао нису били у употреби (Harman и сар., 2013; Moeckel и сар., 2008), њихово управљање и контрола захтијева глобални приступ. Један такав међународни инструмент у том погледу је Штокхолмска конвенција чији су основни циљеви: забранити или смањити производњу, употребу, емисију, увоз и извоз перзистентних органских загађујућих супстанци, затим смањити или елиминисати испуштања из ненамјерне производње и развити стратегије идентификовања и управљања залихама отпада који садржки такве полутанте, ради заштите здравља људи и животне средине.

ВРСТЕ И ИЗВОРИ ПЕРЗИСТЕНТИХ ОРГАНСКИХ ПОЛУТАНАТА

Перзистентни органишки полутанти (POP) угљавном води поријекло из антропогених извора загађивања (производња и коришћење одређених органских хемикалија, индустријска постројења, отпадне воде, процеси сагоријевања отпада и различитих материја органског поријекла, сагоријевање дрвета, нафте, издувени гасови аутомобила и др). Штокхолмска конвенција је својом првом листом забранила производњу, коришћење, увоз и извоз 12 супстанци и група једињења који припадају POPs једињењима, које је UNEP прогласио "приоритетним полутантима", а која су била препозната по томе што узрокују штетне ефekte на људе и екосистем (http://www.pops.int/documents/meetings/dipcon/25june2001/conf4_finalact/en/FINALACT-English.PDF). Нека од тих 12 перзистентних органских једињења у индустрији су намјенски произведена, као што су полицилоровани бифенили (PCB) (трансформаторска и кондензаторска изолациона уља, адитиви, у пластичним масама, бојама, мазивима и др.), и органохлорни пестициди (DDT, алдрин, диелдрин, ендрин, токсафен, хлордан, хептахлор, мирекс, хексахлоробензен3), док трећу групу чине ненамјерно произведена POPs једињења (секундарни продукти при индустријским процесима производње и процесима сагоријевања) у коју спадају: полицилоровани дibenзо-п-диксени (PCDD) и дibenзо-п-фурани (PCDF), полицилоровани бифенили (PCB) и хексахлоробензен (HCB).

Листа POP супстанци није коначна и у будуће ће се проширивати, а тренутно, према задњим изјенама из 2012. године, попис хемикалија Штокхолмске конвенције садржи 22 дуготрајне органске загађујуће материје. Наиме, на IV конференцији потписница, одржано у мају 2009. године, први пут је договорено да ће бити додато 9 супстанци онима које су већ наведене у Конвенцији (12). У ову групу спадају два пестицида

3ДДТ, алдрин, диелдрин, ендрин, токсафен, хлордан, хептахлор, мирекс, хексахлоробензен, техички ендусуфан и његови изомери, те лицид су коришћени у средставима за заштиту биљака, а DDT, диелдрин и токсафен су још коришћени и као биоциди за суббијање ектопаразита људи и животиња (бува, стјеница, вацију и комараца). Мирекс и хексахлорциклохексан (HCB) коришћени су и као индустријске хемикалије.
Пеерзистентне органске загађујуће супстанце (POPs) у Босни и Херцеговини – значај примјене Штокхолмске конвенције

Органохлорни пестициди представљају значајан проблем за животну средину због њихове велике перзистентности, липофилности и токсичности. За сва једињења која спадају у ову групу карактеристично је да су липофилни и хемијски нереактивни, а остаци неких органохлорних пестицида могу постојати у животној средини неколико деценија. Токсичност органохлорних пестицида одређена је многобројним факторима, а између осталих и хемијском структуром. С обзиром на то да су липосолубилни и да споро подлијежу разградњи у организму, биоакумулирају се најчешће у масном ткиву или у облику метаболита, а мањи диелеминисе се урином, плувачком и млијеком (http://www.epa.gov/oppfead1/safety/healthcare/handbook/Chap06.pdf). Карактеристични су и то да подлијежу биомагнификацији у различитом степену током кретања дуж ланца исхране, те се акумулирају у све већим концентрацијама дошијевавајући чак до организма дојечета као крајње карике ланца исхране (Schlaud и сар., 1995). Имајући у виду да су органохлорни пестициди раних седамдесетих година представљали најважније загађујуће супстанце животне средине, у развијеним земљама њихова је примјена у значајној мјери редукована или потпuno смањена, а од ступања на снагу Штокхолмске конвенције, 2004. године, потпuno забрањена. Међутим, у многим неразвијеним и земљама у развоju ове супстанце се и даље користе, а посебно DDT (дихлор-дифенил-трихлоретан) који је спасио од смрти милионе људи уништавајући комарце, преноисаче маљаре, у Азији, Африци и Јужној Америци (Berg, 2008). У Уганди се годишње употребљава 80 тона DDT-а за сузбијање штеточини на памучним позионима и за контролу маљарије, у Азији, Африци и Јужној Америци (Marković и сар., 1996.). Због значајног позитивног дјеловања DDT-a, посебно у здравству, Штокхолмска конвенција не обавезује странке потписнице да потпuno прекину производњу и коришћење DDT-a, него дозвољава његово коришћење за контролу преноисача болести према упутствима Свјетске здравствене организације, али их обавезује да промовишу истраживање и развој алтернативних једињења DDT-у, као и да редовно достављају податке Секретаријату о коришћеној количини, условима и његовој важности за стратегију управљања болешћу. Иако је већина забрана за POPs пестициде настала прије 20-30 и више година, инвентаризацијом POPs пестицида у многим земљама, између осталих и у Хрватској (http://mzoip.hr/doc/stockholmska_npp.pdf), пронађени су подаци о остацима POPs.
пестицида у животној средини, намирницама, животињама и људима. То је посљедица њихове интензивне примјене у прошлости, као и дуге пERSISTентности и споре разградње. Полициклични ароматични угљоводоници⁴ (скраћено PAHs) комбинација су два или више кондензованних ароматичних прстена, а физичке и хемијске карактеристике сваког појединачног једињења се разликују. Заједничке особине чланова PAHs су полу или лака испарљивост, што им чини високомобилним кроз животну средину. У атмосфери, PAHs се налазе слободни у гасовитој фази или ад/апсорбовани на чврстим честицама, животинама и људима. То je последица њихове интензивне примјене у прошлости, као и дуге пERSISTентности и споре разградње.

Полициклични ароматични угљоводоници⁴ (скраћено PAHs) комбинација су два или више кондензованних ароматичних прстена, а физичке и хемијске карактеристике сваког појединачног једињења се разликују. Заједничке особине чланова PAHs су полу или лака испарљивост, што им чини високомобилним кроз животну средину. У атмосфери, PAHs се налазе слободни у гасовитој фази или ад/апсорбовани на чврстим честицама, животинама и људима. То je последица њихове интензивне примјене у прошлости, као и дуге пERSISTентности и споре разградње.

Полициклични ароматични угљоводоници (PAH) као јединствена група супстанци нису експлицитно наведени у анексима Штокхолмске конвенције, али су се земље потписнице обавезале да смање емисије PAHs испод нивоа који је био 1990. године.

⁴ Полициклични ароматични угљоводоници (PAH) као јединствена група супстанци нису експлицитно наведени у анексима Штокхолмске конвенције, али су се земље потписнице обавезале да смање емисије PAHs испод нивоа који је био 1990. године.
Перзистентне органске загађујуће супстанце (POPs) у Босни и Херцеговини – значај примјене

Штожкополске конвенције

попријекла диоксин се угађује у ланац исхране и до човјека долази путем mesa, рибе или млијека. Излучује се путем мајчиног млијека што може штетно дјеловати на здравље новорођенчата. Токсичност диоксина је око 500 пута већи од стрихнина и више од 100 000 пута већа од натријум-цијанида (Peter и сар., 1996). Анализа диоксина захтјева софицирани методе, које су главном доступним ограниченом броју лабораторија у свјету и налазе се у индустријским развијеним земљама. Диоксини настају као спори, нехјерени продукти у индустријским процесима прерађе и производње, те сагорјивања готово свих органских материја у присуству хлора или његових органских или неорганских јединиња (Jerman, 2003). Ослобађа се и у фабрикама целулозе у току процеса избјеливања хлором или његовим јединињама. Про dukција диоксина у околну јавља се и код неконтролисаног спаљивања градског, медицинског и индустријског отпада, код производње PVC-а и неких хербицида, спаљивања пољопривредних култура, итд. Значајан извор диоксина представља експловање и прерађивање фосилних горива. Издувни гасови аутомобила (мотора са унутрашњим сагорјивањем) садржавају диоксине, укључујући TCDD, како и свих 75 изомера PCDD. Полихлоровани бифенили (PCB) представљају смесе 209 синтетизованих органских јединиња која се међусобно разликују по броју и положају атома хлора на ваљским дијеловима молекула са широким могућностима примјене. Лабораторијски су синтезиране 1866. године, али су први пут произведени у индустријским размjerама 1929. године у Монсанто хемијској индустрији (CSD) под комерцијалним називом „Askarel” и од тада почине њихова комерцијална производња. Процењује се да је у периоду од 1930. године до 1980. године произведено око 1.200.000 тона PCB-а (http://mzoip.hr/doc/stockholmska_npp.pdf). Најзначајнији производачи PCB-а су: Monsato (CSD), Bayer (Њемачка), Rhone Poulenc и PCUK (Француска); Kanegafuchi (Јапан), Cros (Шпанија), Cafaro (Италија) и државе источне Европе, док у Босни и Херцеговини није било производње PCB-а. У Босни и Херцеговини се опрема која садржи PCB, кондензатори и трансформатори, највећим дијелом увозила из словеначке фабрике ISKRA – Семич, српских фабрика MINEL – Рипањ и AVALA – Београд, из бившег СССР-а и бившег ДР-а, те од других европских и свјетских производача (ASEA – Шведска). Захваљујући низу поковних карактеристика као техничког материјала (ниска електрена и релативно висока топлотна проводљивост, стабилност на оксидацију и хидролизу, отпорност на киселину ј и базе, слаба растворљивост у води и добра изолаторска способност), полихлороване бифениле нашли су широку примјену у индустрији. Користили су се за производњу изолационих материјала, трансформатора, кондензатора, хидауличних система, система за пренос топлоте, регулатора напона, прекидача, електроничке опreme, пластичних маса, боја, лакова, мазива, адхезивних средстава, пестицида, штампарских боја, итд. Међутим, поред својих добрних особина полихлороване бифениле (PCB) одликује и изузетна токсичност и низ биохазардних карактеристика, због чега се сврстава у опасан отпад и представља ризик загађења животне средине (Tanasković, 2004). Полихлороване бифениле хемијски су веома постојани (према оксидацији, редукцији, елиминацији, адцији и др.), слабо топиви у води, топиви у мастима, јако их је тешко разградити и уништити, па у животној средини остају годинама,
Душица Пешевић, Михајло Марковић, Сниша Митрић

посебно у организмама због липофилних својстава. У воденом средини и земљишту углавном су везани за организмен материју, а у биљкама и животињама, због спорих процеса разрађење, акумулирају се у ткивима која садрже масти и тако улазе у ланц исхране и нагомилавају се у ткивима људи и и животиња, испољавајући непожељне ефекте на организам.

Штетно дејство полихлорованих бифенила посебно је дошло до изражаја у Јапану 1968. године и централном Тајвану 1979. године, када је дошло до тровања конзумирањем пиринчаног уља сатисфацијом, а њени карактеристични симптоми су пигментација коже и ноктију, певање хлоракни, поремећаји вида, укоченост удова и општа слабост (Onozuka и сар., 2009, Kuratsune и сар., 1972). На простору бивше Југославије забиљежено је тровање конзумирањем пиринчаног уља, које је капљи из измјенљивог утробника, као и биљкама и животињама, због спорих процеса разградње, акумулирају се у ткивима која садрже масти и тако улазе у ланц исхране и нагомилавају се у ткивима људи и и животиња, испољавајући непожељне ефекте на организам.

Полихлоровани бифенили у животну средину доспијевају људском активностима у земљишту (акциденталним цурењем, просипањем, процијеђивањем са депонија које га држе, као и растоњењем муља), у воду (акциденталном, цурењем хидрауличних флуида, као и спирањем земљишта), а највећи дио PCB у ваздуху настаје услед испаравања са земљишта или воде. Према доступним информацијама, концентрација PCB у земљишту која је одређена у БиХ приближно од 1992—1995. године (Klanova и сар., 2007; Picer и сар., 2004.; Marjanović и сар., 2008). Препоруке научника широм света су да се примјена материјала који садрже PCB заустави, а да се постојећи PCB подвргну методама коначне прераде у циљу њиховог уништавања, или да се безбједно одложи у складиштема опасног отпада, што је дозвољено и Базелском конвенцијом којом се полихлоровани бифенили сврставају у категорију опасних отпадних материја. У Републици Српској PCB су забрањени Правилником о условима за ограничење и забрану производње, промета и коришћења хемикалија („Службени гласник Републике Српске“бр. 100/10 и 63/13) (Прилог 2, Дно А: „Службени гласник Републике Српске“бр. 100/10 и 63/13) (Прилог 2, Дно А: „Службени гласник Републике Српске“бр. 100/10 и 63/13) уз напомену да је дозвољено коришћење уређаја који се налазе у употреби, уколико то није у супротности са условима датим у прописима којима се уређује одлагање полихлорованих бифенила и полихлорованих трифенила.

Полибромовани дифенил етри (PBDEs), хексабромобифенил (HBB) и перфлуороктан сулфонат (PFOS) спадају у тзв. „нове хемикалије“ Штокхолмске конвенције, које је Конференција странака додала на попис 2009. године. Због мање производње и ограничене употребе, већина материјала која садржавају HBB збринути су прије више деценија, те нису предмет овог рада. Полибромовани дифенил етри (PBDEs) група су индустријских ароматичних органобромних хемикалија које се користе од седамдесетих година 20. вијека као додаци у успоравању горења у широком споразуму потрошачких производа. Конгенерног полибромованих дифенила етара, који укључују тетраб-DE, пента-BDE, хекса-BDE и хепта-BDE супримирају горење у организму материјалу и
Пе́рзистентне о́рганскe зaгaђуjућe супстaнцe (POPs) у Бoсни и Хeрцeгoвини – значaj примjенe Штoкхoлмскe кoнвeнциjе

to je разлог коришћења као додатак материјалима за успоравање горења. Попут свих POPs хeмикaлиja, и нaвeдeнe пoсj тoксичнa свojствa, oтпoрнe нa дeгрaдaциjу и имaju пoтeнциjал биoaкумулaциjе ([Fraser и сar., 2009; McDonald, 2002]. Транспoртуjу сe путeм вaздухa, водoтoкa, и прекo мигрaтoрних врстa, прелaзeћи мeђунaрoднe грaницe и дeпoзициjи сe нa мeстa дaлeкo удaљeнa oд мeстa oдaклe сe oслoбaђaju, aкумулиpoвaнu у oргaнизму кичмeњaкa и у вoдeнoм eкoсистeму ([Hites, 2004]. Ефекти PBDEs нa eкспeримeнтaлним живoтињaмa укључuјe ендокрини пoрeмeћaj, пoрeмeћaj епцe и евeнтуaлнo кaнцeр ([Birnbaum и Staskal, 2004, McDonald, 2002]. a нeкe студиje упућuјe и нa ефeктe кoд људи, кaо штo су ефeктe нa мушкe рeпрoдуктивнe хoрмoнe ([Meeker и сar., 2009], плoднoсти ([Akutsu и сar., 2008] и мaњu пoрoђaњu тeжину и дужину ([Chao и сar., 2007].

Хeмикaлиje збирнoг имeнa PBDEs нajвишe су сe упoтрeбљaвaлe зa трeтмaн пoлиурeтaнских (ПУР) пjeнa кoje су кoришћeнe у тpанспoртнoм сeктoру (пjeнe зa пуњeњe сjeдиштa) и дoмaћинствимa (пjeнe зa пуњeњe мaдрaцa и тaпaцирaнoг нaмjeштaja), кaо и при изрaди кућиштa елeктpичнe и елeктрoнскe oпрeмe (EEO), нapoчитo зa CRT (кaтoднe циjeви), тe зa кaнцeлaриjсku oпрeму каo штo су кoпир мaшинe и принтeри. Kомpилaциja пoдaтaкa o прoизвoдњи припрeмљeнa зa POPs Review Committee (POPRC) прeтпoстaвљa дa сe укупнa прoизвoдњa свих PBDEs у пeриoду oд 1970. дo 2005. крeћe у oбиму измeђu 1,3 дo 1,5 милиoнa тoнa (http://chm.pops.int/Portals/0/download.aspx?d=UNEP-POPS-POPRC.6-2-Annex.English.pdf). Укупнe кoличинe c-PentaBDE и c-OctaBDE кoришћeнe ширoм свeтa проциjeњeнa јe нa oкo 100 000 тoнa пo свaкoj oд кoмeрциjaлних смjeсa. Прoизвoдњa кoмeрциjалнe смjeсe c-DecaBDE кoja сe нe нaлaзи нa листи Штoкхoлмскoй кoнвeнциjи прoциjeњeнa јe нa oкo 1,1 милиoн тoнa дo 2005. гoдинe (http://chm.pops.int/Default.aspx?tabid=2806). Нepравилнo управљaњe oвим хeмикaлиjамa токoм животнoг виjeкa производa кoји их сaдржe, нaрoчитo у oблaсти управљaњa oтпaдoм, мoжe дoвeсти дo eмисиjе POPs и њихoвe aкумулaциjе у животнoj срeдини, кaо и кoд људи и животињa. Перфлуoктaн сулфoнскa кисeлинa (PFOS) и срoднe супстaнцe нaвeдeнe у Штoкхoлмскoj kонвeнциjи пpоизвoдe сe дужe oд 50 гoдинa. Збoг свojих jeдинствeних физичких кaрaктeристикa, вoдoнeпрoпуснoсти и oтпoрнoсти нa мaст, имaлe су ширoку примjену у индустpиjамa каo хeмиjски aгeнc (кaо штo je нpr. елeктpичнa индустpиja), у припрeми мaтeриjaлимa или каo дoдaтak у прoизвoдњи (нpr. текстилинa индустpиja), те зa пpофeсionalну упoтрeбу хeмиских производa, каo штo су нпрoтивпoжaрнe пjeнe. Типичнo су кoришћeнe зa пoвршински трeтмaн мнoгих производa, чeсти су u нe-љeпљивим производaмa, мaтeриjaлимa oтpорним нa флeкe, каo и гардeрoби зa свe врeмeнскe услoвe ([Lim и сar., 2011], Zбoг своjих пoвршинскoг активнoг oсoбинa токoм гoдинa aпликaвaни су u мнoгим производaмa кaо штo су нпрoтивпoжaрнe пjeнe и производи кoји oбeзбjeђuju пoвршинску oтпoрнoст нa вoду, маснoћу или зeмљиштe ([Paul и сar., 2009]. Дo 2002. гoдинe компаниja 3M биla je нaвeћи свjeтски производaч pефлуюpoктaн сулфoнил флyорида (PFOSF), сировинe зa пpизвишeнo пpизвoдництву нa бaзи PFOSa, сa укупнo пpизвишeнoм кoличинe PFOSF кoјa je пpициjeњeнa нa 37 809 тoнa из главних производних пoстрoјeњa у САД и Bелгиji (http://www.pops.int/documents/meetings/poprc/submissions/Comments_2006/3M.doc). Oд тaдa, PFOS je елeминисaн из упoтребe u мнoгим oд нaвeдeних примjена. Oтприликe, кадa je компаниja 3M oбустaвилa производњu PFOS, зaбиљeжeн je пoрaст производњe u Кини, коja je тpенутнo једна земљa коja имa стaлну производnu PFOS ([Lim и сar., 2011].

Закључак Штокхолмске конвенције гласи да је PFOS веома перзистентна супстанца са особином биоакумулације иако не подлеже на класичном принципу нагомилавања у масним ткивима као остали POPs хемикалије. Насупрот осталим POPs хемикалијама, PFOS хемикалије везују се за протеине крви и јетре (Joensen и сар., 2009). Међутим, и ове хемикалије имају способност преношења на велике удалености и испуњавају критеријуме за хроничну токсичност по људе и остали живи свијет. Од престанка производње PFOS од стране 3M компаније, 2002. године, примијењено је смањење концентрација у неким дијеловима животне средине, иако садашња и будућа изложеност зависи од путева емисија, каснијег транспорта и деградације (Paul и сар., 2009).

POPs ЈЕДИЊЕЊА У БОСНИ И ХЕРЦЕГОВИНИ – ОСВРТ НА ПОСТОЈЈЕЋУ СИТУАЦИЈУ И СПРОВЕДЕНА ИСТРАЖИВАЊА

За разлику од земаља Европске уније где постоји велики број информација о присуству перзистентних органских полутаната, у Босни и Херцеговини не постоје подаци о садржају ових јединења у ваздуху и земљишту, с изузетком неколико појединачних локација. Усвајањем Оквирне директиве о водама (2000/60/ЕС) успостављена је листа и процедура за идентификацију специфичних и приоритетних супстанци, укључујући POPs, у водама. Од тада су и ове супстанце уврштене у редовни мониторинг вода у БиХ, о чему заправо има врло мало објављених података, а постаја се питање и акредитације лабораторија у БиХ за ту врсту јединења. Праћење концентрације POPs у земљишту не врши се, осим за РАН, и то једино у ФБиХ. Институције које обављају праћење квалитета ваздуха не врше мјерење концентрације POPs јединења, јер за то не постоје законске основе у важећем законодавству у БиХ. Не постоји ни институција одговорна за систематско праћење POPs у живим бићима, нити постоје резултати систематског праћења. У јавно доступним извештајима и статистичким годишњацима не постоје подаци о резултатима праћења опасних хемијских јединења у отпаду, чиме се овај отпад класификује као опасан отпад. Недостатак података није само посљедица непостојења законске регулативе и мониторинга, већ и неодговарајуће опремљености већине лабораторија за анализу и одређивање остатака POPs јединења, првенствено због недостатка потребних финансијских средстава за њихово уређење.

Током посљедњег рата у Босни и Херцеговини, генерисане су и емитоване велике количине органских загађујућих материја у окружење, као резултат дијелимичног или
Потпуног разарања индустријских постројења, војних циљева, инфраструктуре, експлозија и неконтролисаних пожара. Након рата ЕУ је препознала проблеме контаминације и у овом оквиру Петог оквирног програма Европске уније прихватила је заједнички пројекат APOPSBAL⁵ у трајању од три године (http://www.recetox.muni.cz/projekty/apopsbal/). Пројекат је организован у радним пакетима. Један од најважнијих и најкомплекснијих пакета је истрживање нивоа ваздушног транспорта POPs јединења у Хрватској, Босни и Херцеговини и Србији и Црној Гори, генерисаних као последица ратних разарања.

База података о локацијама загађеним PCB у Босни и Херцеговини не постоји. Испитивањима и контактима с истрживачким институцијама, те прегледом до сада објављених радова на истраживањима и утврђивањима нивоа PCB у животној средини на подручју БиХ, утврђено је да је до најзначајније контаминације локација дошло у услед ратних разарања у протеклом рату (1992–1995) у којем су оштећена или уништена многа војна возила, електроенергетски, индустријски и други објекти из којих је могло доћи до цурења PCB; затим експлозије, прегријавања, испарања и цурења из трансформатора и кондензатора. Поред тога, контаминација PCB је последица неструкног руковања с опремом која садржи овај елемент, затим спирања површина на којој се неконтролисано одлажу уређаји са PCB који нису у потреби, инцидентних ситуација у индустријским погонима и неконтролисаног одлагања уређаја са PCB на постојеће, неуредење депоније отпада у БиХ (Klanova и сар., 2007; http://www.recetox.muni.cz/projekty/apopsbal/index.php?id=762004; Picer и сар., 2004а). Спроведеним истраживањима у оквиру пројекта APOPSBAL детектован је висок садржај PCB у узорцима земљишта и седимената узетих у близини оштећених трансформатора. Висок ниво PCB у земљишту пронађен је пред узазом у тунел бившег војног аеродрома Желева код Бића (164 ppm), а тај садржај потиче од уништених и минираних постројења у тунелима која су садржавала пирален. Утврђени су и значајни нивои PCB у угленокопнима око Тузле (ЕТС Лукавац, Шикуље II – 20 ppm, ЕТС Дубраве – 4 ppm и одлagleште отпада Дубраве – 6 ppm), где су се налазиле оштећени кондензатори, те је постојала могућност продирања PCB до ријеке Спрече (Picer и сар., 2004а). Екстремно високи нивои PCB (преко 100 000 ppm) пронађени су у земљишту око ЕТС Лукавац – Шикуље I (Тузла) и ЕТС Јелах II (Тешања). Највећи ниво PCB (130.000 ppm) измјeren је у узорку у електротрафостанци (ETC) Тешањ у Јелаху одакле су кондензатори били укинута 1986. године (дакле 17 година прије узроковања и анализе земљишта на садржај PCB). Висок ниво PCB пронађен је у седиментима ријеке Спрече код моста Пурашић – Шикуље (2824 ppb), ријеке Гостиље код Ђуђривека (2766 ppb) и ријеке Јале (2048 ppb) у Симин Хану узводно од Тузле, као и ријеке Милашке у Сарајеву поред Врбања моста (1654 ppb). Концентрације PCB већ од 1 ppm у земљишту пронађене су и на подручју бивших војних релеја на врховима планина око Сарајева: Јелашници (2 ppm), Јахорини (6 ppm) и Требевићу (1,3 ppm) (Picer и сар., 20046).

За вријеме последњег ратног конфликта у БиХ уништена су бројне трансформаторске станице у близини Сарајева, и то у непосредној близини изворишта за водоснабдјење. Аналитички узорци тла који су узети на тим подручјима показали су

⁵ Пун назив је „Assessment of the selected POPs (PCB, PCDDs/F, OCPs) in the Atmosphere and Water Ecosystems from the Waste Materijals Generated by Warfare in Area of former Yugoslavia”
да је у само 9 од укупно 42 појединачна узорка укупна концентрација PCB била изнад 0,5 ppb (граница детекције имунохемијске методе), а највећа концентрација која је нађена износила је 1,53 ppb (Marjanović и сар., 2008). То је за 3-4 реда величине мање од концентрација које су нађене у сличним околностима, тако да се може рећи да запажене количине не представљају ризик за контаминацију воде, али разлог за забринутост представља то што су чак и дубљи слојеви тла (50 cm) садржавали исту количину PCB као површински слојеви (5 cm), што указује на континуирану контаминацију (Marjanović и сар., 2008).

На основу наведених и доступних података види се да су истраживања о концентрацијама PCB у оквиру поменутог APOPSBAL пројекта углавном спроведена на простору Федерације Босне и Херцеговине, због чега се намеће закључак о неопходности сличних истраживања и на простору Републике Српске, где се такође могу очекивати повишене концентрације полициклогрованих бифенила као последице ратних разарања и одлагања опасног отпада.

У нашој земљи проблем третмана материја и артиказа које садрже или које су загађене PCB није технички ријешен, као што је углавном случај и са осталим врстама опасног отпада. Последњих година је из Босне и Херцеговине у складу са Базелским конвенцијом извезена већа количина артиказа и отпада са PCB (трансформатори, кондензатори, уља са PCB, отпад са PCB из компаније ЈП „Електропривреда“ БиХ и из Републике Српске, као и из одређених фабрика)6 и транспортирована на финално уништење (инсинерацију) у Француску. Чињеница је да у већини наших фабрика које су престале са радом, или су у процесу приватизације, није дефинисана обавеза преузимања одговорности за постојећи отпад, а постоји гомила бураци или контейнерови чија је садржина углавном непозната, што представља потенцијалну опасност по човјека и животну средину. Иако су антропогени извори ових једињења у земљама у окружењу максимално редукован од укупних деценија, атмосферски нивои PCBs показују статус стационарног стања, што указује на то да се PCBs још увијек испуштају и ослобађају у атмосферу примарним (испаравањем из застарелог или испођене опreme која садржи) или секторским изворима емисије (загађено земљиште, вода), као и транспортом кроз атмосферу. Компанија RECETOX7 спровела је пилот пројекат да би идентификовала потенцијалне критичне тачке изазване недиоектовом употребом и одбацивањем ула која садрже PCB. Резултати студије потврдили су контаминацију земљишта PCB услед цурења трансформаторских уља која су чувана у зарђеним бурадима у округу фабрике „Инцел” у Бањалуци8. Истраживања су показала да се и у другим градовима већина оштећених кондензатора чува без адекватног управљања, што представља значајан извор

6 Према информацијама Министарства вајанске трговине и економских односа Босне и Херцеговине у 2006. години отпад са PCB (трансформатори, кондензатори, уља са PCB, отпад са PCB) из компаније ЈП „Електропривреда“ БиХ, Volkswagen, Скендерија, Босанка, Унис-УГЛ и Mittal Steel Зеница транспортован је на финално уништење – инсинерацију, у Лион, Француска (182.390,00 кг). Група за инвентар PCB која је учитовала у изради Извештаја о преименовању инвентару POPs супстанци у Босни и Херцеговини утврдила је да је укупно приближно 37 тона отпада који садржи PCB спреман за извоз из БиХ.

7 RECETOX – Research Centre for Toxic Compounds in the Environment, Институт при Природно-математичком факултету Универзитета Масаруко из Републике Чешке

8 Податак преузет из „Интегрална водно-енергетска студија развоја слива ријеке Врбас” Модул 1, Водни ресурси, COWI AS, Норвешка, 2013.
контаминације животне средине (нпр. ватрогасна станица у Тузли у којој је ускладиштена одбачена електрична опрема) (Piscer и сар., 2004). У циљу изградње и јачања капацитета за редовно праћење стања у животној средини и идентификације извора загађења персистентним органичким полутантима, у периоду од 2007. до 2011. године, реализована су два пројекта у сарадњи Фармацеутског факултета Универзитета у Сарајеву и Норвешког института за истраживање вода (NIVA) у Ослу, финансирани од стране Норвешког института за науку и Министарства вајских послова Краљевине Норвешке. У склопу наведених пројеката добијени су први општини подаци о концентрацијама персистентних органичних полутаната у водотоцима Неретве и Босне као што су полициклични бифенили (PCB), органохлорни инсектициди (OCP), те полутанти који су однедавно на листи Конвенције, као што су полибромованис фенил ети (PBDE). Љелибеговић и сар. (2010) су у ријеци Неретви утврдили низак ниво концентрације POPs у води, углавном испод границе квалитације. У наведеном раду види се да је концентрација DDT испод границе квалитације, а квалитација је само његов метаболит DDE. С обзиром на постављене годишње концентрације у околнским стандардима квалитета за приоритетне и друге супстанце, у склопу с постојећим домаћом и ЕУ легислативом (Директива 2008/105/ EC), граница допуштене годишње концентрације за капиће воде за укупни DDT је 0,025 µg/L, док је изјерена концентрација r.p –DDE 14 pg/L, што је око 1.800 пута мање од допуштене концентрације. Како се наводи у самом раду, укупна изјерена концентрација органохлорних пестицида (OCP) је 140 pg/L, што се може сматрати позадинским концентрацијама. У студији се наводи закључак да ниво DDT и главног метаболита DDT указују на скору употребу тог инсектицида (Đedivegović и сар., 2010). У раду се такође наводи да се јављају контаминанти попут PBDE које би требало пратити. Агенција за водно подручје Јадранског мора (Мостар) проводи редовне анализе пестицида из групе органохлорних пестицида на ријеци Неретви (мјерни профил Драчево и Житомислићи) и до сада нису забиљежене вриједности које прелазе EQS стандард у склопу с Директивом 2008/105/ EC, односно вриједностима прописаним у прилогу 1 у Уредби о условима за испуштање отпадних вода у природне реципијенте и систем јавне канализације (Službene novine FBiH, број 4/12.). Садржaj РАН у седишту ријеке Босне виши је од постојећих стандарда квалитета за животну средину, посебно у доњем току, непосредно низводно од ушћа Срече, гдје су већина утврђених РАН (флуорен, фенантрен, антрацен, флуорантен, benzo(a)антрацен и др.) показивала концентрације са изразитом акутном токсичншћу. Остале изјерени полутанти као што су PCB и неки пестициди (посебно хептахлор) у седиштима ријеке Босне били су присутни на нивоу који крши међународни критеријум (Harman и сар., 2013.). Резултати пројекта указују на могући утицај на акачативи екосистем након дугорочног излагања. Највећи допринос ових пројеката јесте укључивање одговорних особа и институција, што ствара основу за извођење планираних активности и израду регулаторе за контролу POPs пестициди, с обзиром на вријеме примјене тих једињења у BiX, се могу сврстати у 3 групе: они који никада нису имали дозволу за промет у BiX (мреже), они који су се користили и забрањени су прије 20 и више година (DDT, хексаклорбензен, хлордан, хептахлор, алдрин, диелдрин, ендрин, токсафен) и они који су били у примјени до недавно (линдан и ендосулфан). Ендосулфан и линдан могли су се регистрати и користити до 1. 10. 2008. године, а онда је Савјет

Табела 3. Преглед увоза ендосулфана и линддана у БиХ за период од 2000. до 2008. године на граничним прелазима Рача и Градишка

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ИНСЕКТИЦИДИ</td>
<td></td>
<td>218.354</td>
<td>75.856</td>
<td>108.678</td>
<td>172.440</td>
<td>455.615</td>
<td>86.071</td>
<td>106.077</td>
<td>233.450</td>
<td>124.481</td>
</tr>
<tr>
<td>(Σ)</td>
<td></td>
</tr>
<tr>
<td>ЕНДОСУЛФАН*</td>
<td></td>
<td>7500</td>
<td>0</td>
<td>0</td>
<td>1008</td>
<td>3350</td>
<td>1504</td>
<td>1400</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ЛИНДДАН</td>
<td></td>
<td>2400</td>
<td>3675</td>
<td>7000</td>
<td>2500</td>
<td>2713</td>
<td>1400</td>
<td>990</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

*Препарати на основу ендосулфана формулисали су се као концентроване емулзије (ЕЦ), те се стога увезена количина ових инсектицида искажује у литрама

Истраживачки подаци Катедре за заштиту биља Пољопривредног факултета у Бањој Луци који су пратили промет пестицида на два гранична прелаза у БиХ, Градишка (између БиХ и Хрватске) и Рача (између БиХ и Србије) у периоду од 2000. до 2008. године, наводе како су у том периоду увезено укупно 1.581.022 kg инсектицида ендосулфана и линддана (Слика 1).

Слика 1. Процентуално учешће POPs пестицида (ендосулфана и линддана) у укупној количини увезених инсектицида за период од 2000. до 2008. године на граничним прелазима Рача и Градишка

Почевши од 2008. године линддан и ендосулфан се више нису увозили, што је било у складу са Одлуком о забрани регистрације, увоза и промета фитофармацеутских средстава. Међутим, на основу достављених података Агенције за статистику БиХ, не може се са сигурношћу утврдити о којим производима увезеним под тарифном ознаком 3808912000 (инсектицида на основу хлорованих угљоводоника) се ради, тј. да ли је међу увезеним производима било и POPs пестицида.

Пестицид DDT се престао користити у пољопривреди у периоду од 197 до 1973. године, док је у јавном здравству и шумарству престао да се користи 1989. године. Производње DDT на територији БиХ није било, нити је било увоза, извоза и употребљеног пестицида послије 1989. године. Такође, у оквиру прелиминарног инвентара није потврђено постојање залиха и отпада DDT. Ипак, проучавање кружња органохлорних пестицида које је обављено на простору Бање Луке показало је повишена ниво DDX једињења (нпр. ор и рр –изомера DDT-a, DDE-a и DDD-a 44-74 pg/m^3 у урбanoj
средини и 27 pg/m³ као позадинским нивоом), HCH (α-, β- and γ-isomers, 52-70 vs. 147 pg/ m³), HCB (34-48 vs. <0.1 pg/m³) и пентахлорбензена (6.8-9.9 vs. 6.0 pg/ m³) (Lammel и сар., 2011). То указује на својство POP да се брзо транспортују и распространи кроз атмосферу, а треба имати у виду и чињеницу да је амбалижа POPs пестицида одлагана неконтролисано и неорганизовано, јер у БиХ није било организованог начина збрињавања амбалижа и амбалижног отпада, нити је постојала санитарна депонија за збрињавање такве врсте отпада. Потенцијално контаминарне локације POPs пестицидима, према подацима групе за израду НИП, су производни комбинати на којима се обавља интензивна полопривредна производња (Градишка, Шамац, Бања Лука, Сарајево, Мостар, Орашје, и др.), а који су били активни и прије четрдесетак година, па стога постоји могућност да се се на тим површинама користили и неки од POPs пестицида. У циљу сагледавања стања животне средине треба обезбиједити континуиран мониторинг са стварањем информатичке мреже која би имала широку базу података у смислу извора, количине и динамику испуштања POPs једињења у животну средину.

У ранијем периоду нису регистровани подаци о концентрацији POPs у амбијенталном ваздуху у државама бивше Југославије (Хрватској, Босни и Херцеговини и Србији и Црној Гори) због неадекватних метода, методологије и аналитичке детектовања POPs. Инвентар полицикличних дibenзо фурана и диоксина (PCDF/D) израђен је као саставни дио Националног плана за имплементацију Штокхолмске конвенције. У Босни и Херцеговини не постоје валидни подаци на основу којег се може израчунати и процијенити испуштање PCDD/PCDF у животну средину како последица спаливања разне врсте отпада. Највећи извор емисија диоксина је сагорјевања горива у енергетским постројењима (термоелектране, топлане и постројења за претварање енергије), неконтролисани процеси горења уз сагорјевање огријевног дрвета у домашним стимама, производња жељеза и обојених метала, индустрија папира (хлор за бојење), бојење текстила и коже хлоранилом, производња и употреба хемикалија, производња минералних производа и дрвених саобраћај. Најзначајнији пут испуштања PCDD/PCDF је емисија у ваздух, испуштање у остатак/отпад и приликом производње хемикалија и робе широке потрошње. Доказано је да је диоксин узрокач многих тешких обољења, као што су: канцер, дефекти код новорођених, оштећење имунолошког и централног нервног система (Consonni и сар., 2008). У оквиру израде НИП Штокхолмске конвенције у БиХ, идентификована су потенцијална контаминарана подручја и жаришта у БиХ, а то су: индустријска зона града Тузла (nekадашњи хлоралкални комплекс), „Рафинерија нафте“, а.д. Брод (језеро гудрона), „Рафинерија уља Модрича“ а.д. (језеро гудрона), Фабрика текстила и коже у Високом (одлагалиште у кругу фабрике), Фабрика за производњу опреме за средње и високе напон „Енергоинвест“. Источно Сарајево, бивши индустријски круг Инцел (Бања Лука), Жељезара Arcelor Mittal д.о.о. Зеница (одлагалиште индустријског отпада Рача), Фабрика глинице Алумина д.о.о. (одлагалиште Петковци – око 900.000 t/g), Фабрика алуминија у Мостару (одлагалиште црвеног мула Бачевићи), рудник олова и цинка „Case“ у Сребреници и др. (Слика 2). Према одредбама из Штокхолмске конвенције потребно је омогућити бољи увид у податке о активностима по појединим категоријама и поткатегоријама, као и податке о специфичним технологским процесима, те организовати мониторинг критичких мјеста емисије PCDD/PCDF на нивоу
државе, односно успоставити мрежу пункта који би се вршила мјерања нивоа PCDD/PCDF у животној средини.

Слика 2. Идентификована контаминирана подручја и хот-спотови у Босни и Херцеговини (НИП БиХ, Група аутора, 2015)

Због сложености и обима коришћења PBDEs и PFOS, те сродних супстанци, њихова елиминација из употребе представља изазов за многе потписнице Штогольмске конвенције, међу њима и Босну и Херцеговину. Према Смјерницама за инвентаризацију полибромованих дифенил етера (PBDEs) наведених у Штогольмској конвенцији о POPs (UNEP, 2012), сматра се да се између 90% и 95% c-PentaBDE употребљавало за третман полиуретанских (PUR) пјена. Ове пјене су најчешће коришћене у електричном и текстилном индустрији, те транспортном сектору (автомобилска сједињета, наслони за главу, стројеви, аутомобила, изолационе пјене, овојнице каблова, намјештај, мадрци, итд.). У погледу заступљености PBDEs у транспортном сектору, очекивано је да се велики улио возила произведених од 1970. године (автомобили, аутобуси, возови), који садрже c-PentaBDE, још увијек користи, јер се према последњим објављеним, званичним, подацима просјечна старост аутомобила у БиХ креће око 17 година. Не постоји евиденција о количинама половине електричне и електронске опреме (EEO) која се увози и извози из БиХ, нити о стању ове опреме, али на основу произведен акнекте о количини EEO у залихама код потрошача (корисника) и просјечном животном вијека опреме, израчунато је да се годишње у БиХ створи око 92,592 тона овог отпада (НИП БиХ, 2015), односно око 24,4 kg по глави становника. PFOS и сродне супстанце, због својих површинских активних својстава, у протеклих 50 година коришћене су у широком групи примене, које укључују противпожарне пјене и површине отпорне на уље, воду, масноћу и сл. Производи који традиционално садржје PFOS су текстил, намјештај, одјећа, обућа, козметика, кожни производи, синтетички тенси, средства за чишћење, итд. Не постоје прецизни подаци о укупним количинама PFOS у БиХ, а према оквирним процјенама.
укупна количина PFOS у БиХ у 2012. години износи од око 50 тona до преко 280 тона (најнижа/највиша вриједност). Према прикупљеним подацима, укупна количина противпожарних пјена у БиХ у залихам износи 8.455 литара, од чега је највећа количина стигла у виду донација (од Канадског батаљона) у количини од чак 5.600 литара (НИП БиХ, 2015). Тек након детаљног инвентара ових супстанци можиће се утврдити њихове тачне количине, што ће омогућити процјену њихове будуће употребе. Институције одређене за управљање хемикалијама и отпадом требало би да дефинишу систем управљања POPs супстанцима (укључујући PBDEs/PFOS) и опасним отпадом и начинима њиховог одговарајућег, еколошки прихватљивог коначног збрињавања.

За провођење Националног имплементационог плана (НИП), као и уопште стратегије за заштиту и очување животне средине неопходно је имати свеобухватне податке о присуству и концентрацијама POPs полутаната у животној средини. Приоритетан значај и основу за доношење низма мјера у циљу унапређења стања животне средине представља успостављање катастра загађивача и инвентара загађујућих материја у све медије животне средине, причему би се формирао јединствен списак загађујућих материја, између осталих и оних које спадају у групу POPs материја, на начин да то праћење буде прилагођено изради одговарајућег извјештаја органима Конвенција које прате своје специфичне области.

ЗНАЧАЈ ШТОКХОЛМСКЕ КОНВЕНЦИЈЕ ЗА БОСНУ И ХЕРЦЕГОВИНУ

Велики број научних испитивања и практичних анализа са краја двадесетог вијека, указује на штетност употребе POP, што је и узроковало дефинисање и усвајање великог броја конвенција и законских регулатива, које треба да регулишу производњу, примјену и испуштање ове групе полутаната у животну средину. Босна и Херцеговина потписала је Штокхолмску конвенцију 2001. године, када је Конвенција први пут отворена за потписивање, а ступила је на снагу 17. маја 2004. године, у моменту кад ју је 50% земаља у свјету ратификовало.

Било је потребно девет година од потписивања да би Босна и Херцеговина ратификовала Конвенцију о пеезистентним органским полутантима. Одлука Предсједништва БиХ о ратификацији Штокхолмске конвенције донесена је 2. марта 2010. године. Као земаља потписница Босна и Херцеговина тиме се обавезује да ће предузети све мјере у циљу смањења или елиминације отпуштања у животну средину пеезистентних органских полутаната који су наведени у анексу ове Конвенције. Као нова чланница Конвенције, БиХ је преузела обавезу да припреми Национални акциони план (НАП) заједно са Националним планом за имплементацију (НИП), у року од двије године од датума ступања Конвенције на снагу. Процес доношења и усвајања НИП отежан је сложеном социополитичком ситуацијом у земљи, те недостатком материјалних ресурса и капацитета.

Босна и Херцеговина преузела је многобројне обавезе након ратификације Штокхолмске конвенције:

- забрани производње и коришћења, увоза и извоза хемикалија са листе Анекса А Конвенције;
• ограничавање производње хемикалија са листе Анекса Б Конвенције;
• управљање хемикалијама са листе Анекса Ц, односно стављање под контролу како би им се смањила или потпуно елиминисала емисија;
• идентификација загађених локација и спровођење мјера обнављања (ремедијације);
• развој Националног имплементационог плана уз консултовање свих заинтересованих и утицајних субјеката;
• размјењивање информација са канцеларијом Конвенције;
• информисање јавности о POPs супстанцима, Конвенцији и активностима, развој тренинга и образовних програма за креаторе политике Конвенције;
• подржавање истраживања POPs супстанци;
• финансијско подржавање свих активности везаних за Конвенцију;
• развој стратегије за идентифицију залиха са листе А и Б Конвенције;
• управљање залихама POPs хемикалија на прописан начин;
• предузимање адекватних мјера безбједног и неповратног трансформисања или уништавања или безбједног одлазања POPs супстанци ради заштите живота свијета и животне средине;
• забрана одлазања POPs хемикалија ради поновног коришћења, рециклаже, обнављања, директне или алтернативне употребе.

Поред наведених обавеза Босна и Херцеговина као потписница Штокхолмске конвенције има и одређена права као што је право да предложи нову хемикалију за уврштање на листе Анекса А, Б или Ц, као и право да идентификује Националну фокалну тачку ради обавјештавања, размјене информација о POPs са Секретаријатом конвенције. Национално законодавство мора се усагласити са конвенцијом и то кроз све законе који имају везе са POPs. Морају се прописати норме за емисију и имисију, односно одговорајуће методе којима се то може одредити. Ово се односи првенствено на законе којима се регулира питања управљања хемикалијама, средстава за заштиту биља, квалитета хране, отпада, ваздуха и друго. У циљу заштите животне средине и здравља људи неопходно је предузети одговорајуће мјере за адекватно управљање отпадом који садржи или је контаминиран POPs матерijама и извршити узорковање и анализу отпадних гасова који се емитују из индустријских постројења, да би се утврдили концентрације PCDD/PCDF и РАН. Из тог разлога потребно је развити инвентар емисија за PCDD/F, HCB, PCB у свим медијима животне средине и инвентар PCB течног и чврстог отпада, као и успоставити мониторинг POPs једињења у земљишту, води и ваздуху, као и у храни животног поријекла.

Рана фаза у имплементацији Конвенције је развој националних планова за имплементацију, који би требало да укључује процјену извора и утицаја POPs, постојећу инфраструктуру потребну за имплементацију и потребне додатне капацитете. У Босни и Херцеговини у току је усвајање Националног плана за имплементацију (НИП) Штокхолмске конвенције који има за сврху да помогне у испуњавању обавеза које простичу из Конвенције, да повећа свијест о POPs и мјерама за њихову контролу, да представи мјере које су предузете, као и да успостави стратегију и акционе планове за даље кораке у вези са перзистентним органским полутантима. Израду НИП подржао је
Глобални фонд за животну средину (Global Environmental Facility – GEF) преко Програма Уједињених нација за животну средину (United Nations Environmental Programme – UNEP), који иначе служи за помоћ земљама у развоју и транзицији. Пројекат у вриједности од 500.000 америчких долара који финансира GEF имплементиран је у периоду 2010–2012. године, чиме је дата подршка активностима које би требале олакшати имплементацију Конвенције (http://www.bhas.ba/dokumenti/EPR_2_001_01-bh.pdf). Израдом и усвајањем Националног плана за имплементацију у земљи се успоставља систем инвентара информација о производњи, трговини, употреби, складиштењу, испуштању и одлагању перзистентних органских полутаната.

У циљу квалитетне израде извјештаја о стању POPs једињења у БиХ потребно је законо прописати и осигурати финансирање програма системског мониторинга POPs једињења у свим елементима животне средине. Организовање мониторинга у биљкама и биљним производима, храни, води и земљишту, уз одговарајућу законску регулативу, захтијева формирање и неколико лабораторија у складу с прописима у ЕУ, у којима би се истраживања обављала на новој прецизној опреми, ради одређивања остатака POPs једињења, али и других хемикалија које су перзистентне и које ће се у ближој будућности уврстити у листу POPs једињења.

ЗАКЉУЧАК

Перзистентни организки полутанти (POPs) су хемикалије којима се придаје значај због њиховог дуготрајног и токсичног дејства које изазива тешке последице по живот и здравље људи, националну економију и животну средину у цјелини. Ниво сазнања о POPs једињењима и њиховом негативном утицају на животну средину и здравље људи на релативно је ниском нивоу, те је у блиској будућности потребно покренути националне програме едукације и образовања становништва.

У Босни и Херцеговини није организован свеобухватали мониторинг нивоа POPs једињења у узорцима из животне средине, храни и људи. Мјерења нивоа дуготрајних органохлорних једињења у различитим медијима сведена су углавном на међународне истраживачке пројекте водећих института и контролу нивоа у појединим медијима (првенствено води и узорцима храни) о којима има врло мало објављених података. На основу проведенih пројеката објављен је мањи броj научних радова о појединим једињењима коja припадају групи перзистентних организких полутаната. Не постоji систематичност у резултатима, a збog различитог приступа тешко их је резимирати.

Штокаолмска конвенција прописује контролне мјере које се односе на производњу, увоз, извоз и одлагање перзистентних организких једињења. Од земаља чланица Конвенције захтјева се промовисање најбољих распоредака техника и најбоље праксе (BAT – Best Available Techniques i НЕП – Best Environmental Practices) у циљу замјене коришћења постојећих и превенције настанка нових POPs једињења.

Ризици везани за примјену НИП односе се углавном на финансијске потешкоћe, са којима се једнако суочавају загађивачи који су већински носиоци трошкова за унапређење управљања POPs једињењима и органи државне управе, који су дужни да обезбиједе одговарајуће управљање овим супстанцама. Први корак ка изради извјештаја о стању POPs једињења у БиХ је успостављање боље сарадње и размјене информација између релевантних институција. Осим тога, потребно је унаприједити, ускладити и ојачати
законску, институционалну, техничку и финансијску основу, као и механизме и мјере за безбједно управљање POPs једињењима и мониторинг њиховог утицаја на животну средину.

ЛИТЕРАТУРА

37. Правилник о условима за ограничење и забрану производње, промета и кориштења хемикалија, Службени гласник Републике Српске, бр. 100/10
38. Правилник о измјенама и допунама правилника о условима за ограничење и забрану производње, промета и кориштења хемикалија, Службени гласник Републике Српске, бр. 63/13
42. Uredba o uslovima za ispuštanje otpadnih voda u prirodne recipijente i sistem javne kanalizacije (Službene novine FBiH, број 4/12).
43. http://www.epa.gov/oppfead1/safety/healthcare/handbook/Chap06.pdf (01.03.2015)
44. http://chemicals.befgroup.net/assets/HS_eng_Final1.pdf (10.06.2015.)
Перзистентне органске загађујуће супстанце (POPs) у Босни и Херцеговини – значај примјене
Штокхолмске конвенције

47. http://mzoip.hr/doc/stockholmska_npp.pdf (12.06.2015.)

Примљено: 22.06.2015.
Abstract

SJENIČIĆ, Jovica, B. GAŠIĆ, Gordana ĐURIĆ, Sunčica BODRUŽIĆ, Snježana HRNČIĆ, J. PAŠIĆ: PROTECTION AND MANAGEMENT OF FAUNA OF THE PROTECTED AREA FOR RESOURCES MANAGEMENT "UNIVERSITY CITY" BANJA LUKA [Genetic Resources Institute of the University of Banja Luka, Bulevar Vojvode Petra Bojovica 1A 78000 Banja Luka, Republic of Srpska, Bosnia and Herzegovina; The Museum of Republika Srpska, Đure Daničića 1, 78000 Banja Luka, Republic of Srpska, Bosnia and Herzegovina; Faculty of Biotechnology, University of Montenegro, Mihaila Lalića 1 81000 Podgorica, Montenegro; Society for Research and Protection of Biodiversity, Brace Potkonjaka 16, 78000 Banja Luka, Republic of Srpska, Bosnia and Herzegovina]

The state of research of wild fauna in urban and suburban areas of Banja Luka is rather scarce, and so far the most detailed research has been conducted on ornithofauna. Research of vertebrate fauna has been conducted since 2012 in the core of Banja Luka city centre, more accurately in the protected area for resources management "University City" and its vicinity. This paper presents vertebrate fauna (amphibians, reptiles, birds and mammals) registered in the protected area. Qualitative and quantitative data are presented, overview of species with international threat status is given, species that are important for biodiversity conservation in our area are sorted out, and special concept of protection with measures for active protection is proposed. Also, deficiencies in current studies are presented and the need for further research of target groups is emphasized. Of all registered classes birds stand out with their diversity with 61 species, then mammals with 16 species, reptiles with 8 species and amphibians with 4 species. Diversity of fauna is conditioned by the diversity of habitats, food sources, the existence of shelters and relatively low level of disturbance. Several species typical for urban areas were not recorded, but can be realistically expected in the protected area. Management of vertebrate fauna and active protection of fauna include a number of activities in the process of planning and application of tasks necessary for construction of ecological infrastructure, maintenance and use of land, facilities and infrastructure in the protected area.

Key words: fauna, urban areas, protection of biodiversity, city of Banja Luka
Сажетак

Стање истражености дивље фауне урбаних и субурбаних подручја Бање Луке прилично је оскудно, а до сада је најдетаљније истражена орнитофауна. Истраживања фауне кичмењака вршена су од 2012. године у склопу градског језгра Бање Луке, на територији заштићеног подручја за управљање ресурсима „Универзитетски град“ и у његовој ближој околнини. У раду је представљена регистрована фауна кичмењака (водоземци, гмизавци, птице и сисари) распрострањена на територији заштићеног подручја. Презентовани су квалитетивни и квантитативни подаци, дати прегледи врста са међународним статусом угрожености, издвојене врсте које су значајне с аспекта очувања биодиверзитета на нашем подручју, те посебно предложен концепт заштите са мјерама активне заштите. Представљени су недостаци у досадашњем истраживању и истакнуте потребе за даљим истраживањима циљних група. Од свих регистрованих класа, разноврсности се истичу птице са 61 врстом, затим 16 врста сисара, 8 врста гмизаваца и 4 врсте водоземаца. Разноврстост фауне условљена је разноврсношћу станишта, изворима хране, постојањем склоништа и релативно ниском степеном узнемиравања. Неколико типичних врста за урбани подручја није забиљежено, али се могу реално очекивати у заштићеном подручју. Управљање фауном кичмењака и активна заштита обухвата низ активности у процесу планирања и извођења радова на изградњи еколошке инфраструктуре те одржавања и коришћења површина, објеката и инфраструктуре у заштићеном подручју.

Кључне ријечи: фауна, урбана подручја, заштита биодиверзитета, град Бања Лука

УВОД

У заштићеном подручју за управљање ресурсима „Универзитетски град“ у Бањој Луци регистрован је 81 таксон дендрофлоре, те одређене културно-историјске, социјалне, естетске, пејзажне, фаунситичке и друге вриједности, због којих је цијели комплекс 2012. године стављен под заштиту Рјешењем Министарства пољопривреде, шумарства и водопривреде Републике Српске (Сл. Гласник РС бр.53/12). Вредновање дендрофонда парка показало је да се од укупног броја у парку налази 116 изузетно вриједних, 118 вриједних, 848 средње вриједних и 248 стабала које је потребно замјенити (Кадић и сар., 2012). Од периода валоризације и проглашавања правне заштите изглед подручја незнатно је измијењен, у смислу уношења неколико нових врста дрвећа и жбуња, садње пољске колекције воћа, те санитарног орезивања и уклањања појединих стабала. У погледу истраживања дивље фауне у Бањој Луци и њеној околнини стање истражености прилично је оскудно, а постојећа истраживања већином су обухватали поједине фаунситичке студије, са пописом врста неких подручја. У самом граду Бања Лука, истраживање орнитофауна бавило се неколико аутора (Гашић, 2001; Црнковић, 2010; Сјеничић и сар., 2013), али систематског истраживања урбане фауне до сада није било. Истраживања фауне заштићеног подручја „Универзитетски град“ вршена су од 2012. године првим орнитофаунистичким и еколошким истраживањима овог подручја (Сјеничић и сар., 2013), али и у склопу валоризације овог подручја у биолошко-конзерваторском смислу (Кадић и сар., 2012). Од тог периода повремено су биљежени подаци и о другим кичмењацима на

МАТЕРИЈАЛ И МЕТОДЕ

Подручје управљања ресурсисма комплекс „Универзитетски град“ налази се на лијевој обале ријеке Врбас у близини центра града у насељу Борик. Шире подручје налази се у појасу климатогене шуме храста китњака и обичног граба (Querco-Carpinetum betuli). Алувијалне терасе са влажним типовма земљишта биле су претежно под шумама храста лужњака и обичног граба (Carpino betuli – Quercetum roboris) што је случај и са Универзитетским градом, док су саме ријечне обале под шумама врбе и тополе. Најзаступљеније врсте дендрофлоре у парку су обична (Picea abies) и бодљикава смрча (Picea pungens), а од лишћарских врста најзаступљенији је платан (Platanus x acerifolia). У кругу Универзитетског града налази се неколико импозантних стабала, остатака исконске вегетације: једно стабло лужњака, неколико пољског јасена, неколико бријестова, један клен, а на обали Врбаса – врбе (Кадић и сар., 2012). Теренски рад обухватио је вишестране обилазне територије заштићеног подручја и његове ужне околине, до 100-200 m око истраживаног подручја (Слика 1).
Истраживања фауне птица заштићеног подручја „Универзитетски град“ вршена су током пролећа, јесени и зиме 2014. године (од марта до априла, те од октобра до децембра) и током зиме 2015. године. Поред оригиналних научних истраживања кориштен је и преглед постојећих научних радова (Сјеничић и сар., 2013), база података, рукописа аутора (Сјеничић, in litt.) и студија (Кадић и сар., 2012) који су обрађивали орнитофауну у заштићеном подручју. Због приступачности и мање површине истраживаног подручја коришћена је метода тоталног цензура. Бројност парова птица утврђена је пребојавањем пјевајућих мужјака или активних гнијезда. За испитивање територијалности и утврђивање присуства појединих пјевачица и дјетлића коришћена је и тзв. „плејбек“ метода (playback census technique, Gregory и сар., 2004). Репродуковани су пјесма мужјака или зов након чега је биљежено одговарање птица и други облици територијалног понашања. Теренско истраживање вршено је претежно у јутарњим часовима кад су уједно и птице најактивније док су подаци о опажању ноћних грабљивица евидентирани током ноћи. За врсте код којих је потврђено гнијежђење (пронађено гнијездо, јаја или млади) коришћена је ознака гњездарица станарица или гњездарица селица. Врсте код којих је могуће гњежђење означене су као могуће гњездарице (посматране у повољном периоду гњежђења на погодном станишту, забиљежено неко територијално понашање и сл.). Врсте које нису гњездарице истраживаног подручја означене су као гњездарице непосредне околине тј. редовне или свакодневне луталице (претпостављено или утврђено да гњезде преко 100-200 m од истраживаног подручја, а хране се или повремено бораве у ЗП), прелетнице (забиљежене само током зиме у заштићеном подручју током прелета на сеоби) или зимовалице (биљежене само током зиме у истраживаном подручју). За посматрање птица коришћена је двоглед увећања 8x42, а сама идентификација птица вршена је према илустрованом приручнику за детерминацију Collins Bird Guide (Svensson и сар., 2010), док су научни називи птица дати према Kotrošan и Papes (Kotrošan и Papes, 2007) и Kotrošan (Kotrošan, 2008). За фотографију коришћен је фотоапарат са оптичким зумом од 50х. Еколошке карактеристике птица у смислу миграторног статуса дате су према Бенинг–Гесеу и Бауеру (Böhning-Gaese и Bauer, 1996).
детерминацију Batsound (Pettersson Elektronik AB). Шишмиши су одређивани према Дицу и Хелверсену (Dietz и Helversen, 2004), а кориштени су народни називи према Мулаомеровићу (Mulaomerović, 2013). Неки представници класе сисара биљежени су и преко усмених саопштења радника на одржавању заштићеног подручја. Научни називи фауне сисара дати су према Котрошану и сар. (2005).

Због сразмјерно мале бројности, приступачности за посматрање и лаке визуелне распознатљивости врста, није било потребе да се водоземци и гмизавци плани су волјно података да се створи почетна слика о диверзитету ових група. Херпетофауна биљежена је посматрањем и путем дојава радника на обезбеђењу и одржавању, као и грађана-посетилаца заштићеног подручја. За одређивање врста кориштена је кључ за детерминацију и податке о екологији врста (Radovanović, 1951).

РЕЗУЛТАТИ

Приликом властитих орнитолошких истраживања и прегледом резултата истраживања других аутора (Сјеничић, in litt.; Кадић и сар., 2012; Сјеничић и сар. 2013), на територији заштићеног подручја забиљежена је 61 врста птица (Слике 2, 3 и 4). У табели 1. наведене су регистроване врсте са миграторним стаутисима у истраживаном подручју, те су описана околности под којим су врсте посматране, а евидентирана је и њихова активност и микростаниште.

<table>
<thead>
<tr>
<th>Бр</th>
<th>Таксон</th>
<th>Народни назив</th>
<th>Напомена</th>
<th>Статус заштите</th>
</tr>
</thead>
<tbody>
<tr>
<td>Класа: Aves</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ред: Pelecaniformes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Породица: Phalacrocoracidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Phalacrocorax carbo (Linnaeus, 1758)</td>
<td>велики вранац</td>
<td>Биљежен редовно у прелету преко Врбаса. Зимује и храни се на Врбасу.</td>
<td>ЦЛ</td>
</tr>
<tr>
<td>Ред: Ciconiformes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Породица: Ardeidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Ardea cinerea (Linnaeus, 1758)</td>
<td>сива чапља</td>
<td>Гњездарица на Врбасу у даљој околини. Током цијелог године у прелету преко заштићеног поручја. Храни се на Врбасу.</td>
<td>ЦЛ</td>
</tr>
<tr>
<td>3</td>
<td>Egretta garzetta (Linnaeus, 1766)</td>
<td>мала бијела чапља</td>
<td>Појединачно у прелету преко Врбаса током сеобе.</td>
<td>ЦЛ</td>
</tr>
<tr>
<td>Ред: Anseriformes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Пространство за манипулацију текста</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>-------------------------------------</td>
<td>-------------------------------------</td>
<td>-------------------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Породица: Anatidae</td>
<td>Породица: Anatidae</td>
<td>Породица: Anatidae</td>
<td>Породица: Anatidae</td>
<td>Породица: Anatidae</td>
</tr>
<tr>
<td>4 Anas platyrhynchos (Linnaeus, 1758)</td>
<td>патка глувара</td>
<td>Гњездарица станарица ближе околнине (на Врбасу).</td>
<td>ЦЛ</td>
<td>Породица: Accipitridae</td>
</tr>
<tr>
<td>Породица: Accipitridae</td>
<td>Породица: Accipitridae</td>
<td>Породица: Accipitridae</td>
<td>Породица: Accipitridae</td>
<td>Породица: Accipitridae</td>
</tr>
<tr>
<td>5 Accipiter nisus (Linnaeus, 1758)</td>
<td>кобац</td>
<td>Гњездари у близини. Лови у заштићеном подручју.</td>
<td>ЦЛ</td>
<td>ЦЛ</td>
</tr>
<tr>
<td>6 Buteo buteo (Linnaeus, 1758)</td>
<td>обични мишар</td>
<td>Гњездари у близини. Лови у заштићеном подручју.</td>
<td>ЦЛ</td>
<td>ЦЛ</td>
</tr>
<tr>
<td>7 Aquila pomarina (C. L. Brehm, 1831)</td>
<td>орао кликташ</td>
<td>Забиљежен пролећа 2012. г. како кружи изnad заштићеног подручја.</td>
<td>ЦЛ</td>
<td>ЦЛ</td>
</tr>
<tr>
<td>Породица: Falconidae</td>
<td>Породица: Falconidae</td>
<td>Породица: Falconidae</td>
<td>Породица: Falconidae</td>
<td>Породица: Falconidae</td>
</tr>
<tr>
<td>8 Falco subbuteo (Linnaeus, 1758)</td>
<td>соко ластавичар</td>
<td>Гњездарица ближе околнине. Лови у заштићеном подручју.</td>
<td>ЦЛ</td>
<td>ЦЛ</td>
</tr>
<tr>
<td>Ред: Galliformes</td>
<td>Ред: Galliformes</td>
<td>Ред: Galliformes</td>
<td>Ред: Galliformes</td>
<td>Ред: Galliformes</td>
</tr>
<tr>
<td>Породица: Phasianidae</td>
<td>Породица: Phasianidae</td>
<td>Породица: Phasianidae</td>
<td>Породица: Phasianidae</td>
<td>Породица: Phasianidae</td>
</tr>
<tr>
<td>9 Phasianus colchicus (Linnaeus, 1758)</td>
<td>фазан</td>
<td>Гњездарица ближе околнине. Храни се и скрива у заштићеном подручју.</td>
<td>ЦЛ</td>
<td>ЦЛ</td>
</tr>
<tr>
<td>Ред: Gruiformes</td>
<td>Ред: Gruiformes</td>
<td>Ред: Gruiformes</td>
<td>Ред: Gruiformes</td>
<td>Ред: Gruiformes</td>
</tr>
<tr>
<td>Породица: Gruidae</td>
<td>Породица: Gruidae</td>
<td>Породица: Gruidae</td>
<td>Породица: Gruidae</td>
<td>Породица: Gruidae</td>
</tr>
<tr>
<td>10 Grus grus (Linnaeus, 1758)</td>
<td>сиви ждрал</td>
<td>Прелијеће у јатима на свооби преко заштићеног подручја.</td>
<td>ЦЛ</td>
<td>ЦЛ</td>
</tr>
<tr>
<td>11 Fulica atra (Linnaeus, 1758)</td>
<td>лиска</td>
<td>Забиљежена на Врбасу према усменом саопштењу баштована.</td>
<td>ЦЛ, NT</td>
<td>ЦЛ</td>
</tr>
<tr>
<td>Породица: Charadriiformes</td>
<td>Породица: Charadriiformes</td>
<td>Породица: Charadriiformes</td>
<td>Породица: Charadriiformes</td>
<td>Породица: Charadriiformes</td>
</tr>
<tr>
<td>Породица: Laridae</td>
<td>Породица: Laridae</td>
<td>Породица: Laridae</td>
<td>Породица: Laridae</td>
<td>Породица: Laridae</td>
</tr>
<tr>
<td>12 Larus ridibundus (Linnaeus, 1766)</td>
<td>обични галеб</td>
<td>Редовна луталица. Гњездари на спрудовима у даљој околнини. Ријетко прелијеће заштићено подручје и Врбас.</td>
<td>ЦЛ</td>
<td>ЦЛ</td>
</tr>
<tr>
<td>Ред: Columbiformes</td>
<td>Ред: Columbiformes</td>
<td>Ред: Columbiformes</td>
<td>Ред: Columbiformes</td>
<td>Ред: Columbiformes</td>
</tr>
<tr>
<td>Породица: Columbidae</td>
<td>Породица: Columbidae</td>
<td>Породица: Columbidae</td>
<td>Породица: Columbidae</td>
<td>Породица: Columbidae</td>
</tr>
<tr>
<td>13 Columba livia (J. F. Gmelin, 1789)</td>
<td>дивљи голуб</td>
<td>Гњездарица станарица у заштићеном подручју. Забиљежено најмање 6 парова током сезоне гњежђења 2015. г.</td>
<td>ЦЛ</td>
<td>ЦЛ</td>
</tr>
<tr>
<td>14 Columba palumbus (Linnaeus, 1758)</td>
<td>голуб гривњаш</td>
<td>Гњездарица селица у заштићеном подручју. Забиљежена 4 пара у 2015. г.</td>
<td>ЦЛ</td>
<td>ЦЛ</td>
</tr>
<tr>
<td>15 Streptopelia decaocto (Frivaldszky, 1838)</td>
<td>гугутка</td>
<td>Гњездарица станарица у заштићеном подручју. Забиљежен 1 пар у 2015. г.</td>
<td>ЦЛ</td>
<td>ЦЛ</td>
</tr>
<tr>
<td>Ред: Strigiformes</td>
<td>Ред: Strigiformes</td>
<td>Ред: Strigiformes</td>
<td>Ред: Strigiformes</td>
<td>Ред: Strigiformes</td>
</tr>
<tr>
<td>Породица: Strigidae</td>
<td>Породица: Strigidae</td>
<td>Породица: Strigidae</td>
<td>Породица: Strigidae</td>
<td>Породица: Strigidae</td>
</tr>
<tr>
<td>16 Otus scops (Linnaeus, 1758)</td>
<td>ћук</td>
<td>Гњездарица селица у заштићеном подручју. До 2013. г. гњездарио најмање 1 пар. Сада гњездарица ближе околнине (насеље Борик).</td>
<td>ЦЛ</td>
<td>ЦЛ</td>
</tr>
<tr>
<td>№</td>
<td>Вид</td>
<td>Родина</td>
<td>Специфика</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------------------</td>
<td>--------------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Strix aluco (Linnaeus, 1758)</td>
<td>шумска сова</td>
<td>Гњездарица станарица у заштићеном подручју. У марту 2015. г. забиљежено уништено легло (2 јајата) у орезиваној лици.</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Athene noctua (Scopoli, 1769)</td>
<td>кукумавка</td>
<td>Гњездрица станарица у заштићеном подручју са 1 паром у 2012. г. Касније није биљежена.</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Asio otus (Linnaeus, 1758)</td>
<td>сова утина</td>
<td>Гњездрица станарица у заштићеном подручју у 2012. и 2013. г. гнјезддио 1 пар. Касније није биљежена.</td>
<td></td>
</tr>
</tbody>
</table>

Ред: Piciformes
Породица: Picidae

20 | *Dendrocopus major* (Linnaeus, 1758) | велики дјетлић | Гњездарица станарица у заштићеном подручју. У пролеће 2015. г. присутан 1 пар. |

21 | *Picus viridis* (Linnaeus, 1758) | зелена жуна | Гњездарица станарица ближе окoline. Храни се у заштићеном подручју. |

22 | *Delichon urbica* (Linnaeus, 1758) | градска ласта | Гњездарица селица ближе окoline (објекти околних насеља). Храни се у заштићеном подручју. |

23 | *Anthus trivialis* (Linnaeus, 1758) | шумска трептељка | Пролазница на сеоби. |

24 | *Motacilla alba* (Linnaeus, 1758) | бијела плиска | Гњездарица селица ближе окoline. Храни се у заштићеном подручју. |

25 | *Regulus regulus* (Linnaeus, 1758) | жутоглави краљић | Зимовалица. |

26 | *Troglydtes troglodytes* (Linnaeus, 1758) | царић | Зимовалица и могућа гњездарица на обали Врбаса. |

27 | *Turdus merula* (Linnaeus, 1758) | обични кос | Гњездарица станарица у заштићеном подручју. Забиљежено 1 пар у 2015. г. |

28 | *Turdus pilaris* (Linnaeus, 1758) | дрозд боровњак | Зимовалица. Забиљежено јато од 8 птица током зиме 2015. г. |

29 | *Phylloscopus sibilatrix* (Bechstein, 1793) | шумски звиждак | Пролазница на сеоби. |

30 | *Phylloscopus collybita* (Vieillot, 1817) | обични звиждак | Гњездарица селица ближе окoline (Бањалучко поље). Храни се у заштићеном подручју. |
<table>
<thead>
<tr>
<th>№</th>
<th>Вид</th>
<th>Семејствен назив</th>
<th>Назив</th>
<th>Споменик</th>
<th>Опис</th>
<th>Статус</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Sylvia atricapilla (Linnaeus, 1758)</td>
<td>Sylvia</td>
<td>Црноглава грамуша</td>
<td>Гњездарица селица у заштићеном подручју. Забиљежен 1 пар у 2015. г.</td>
<td>ЦЛ</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Sylvia communis (Latham, 1787)</td>
<td>Sylvia</td>
<td>Обична грамуша</td>
<td>Гњездарица селица ближе околнине (Бањалучко поље). Храни се у заштићеном подручју.</td>
<td>ЦЛ</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Muscicapa striata (Pallas, 1764)</td>
<td>Muscicapa</td>
<td>Сива мухарица</td>
<td>Прелетница.</td>
<td>ЦЛ</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Ficedula albicollis (Temminck, 1815)</td>
<td>Ficedula</td>
<td>Бјеловрата мухарица</td>
<td>Јдан налаз женке 2012. г. Непознат статус.</td>
<td>ЦЛ</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Erithacus rubecula (Linnaeus, 1758)</td>
<td>Erithacus</td>
<td>Црвендађ</td>
<td>Зимовалица и могућа гњездарица станарица.</td>
<td>ЦЛ</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Luscinia megarhynchos (C. L. Brehm, 1831)</td>
<td>Luscinia</td>
<td>Мали славуј</td>
<td>Гњездарица селица ближе околнине.</td>
<td>ЦЛ</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Phoenicurus ochruros (S. G. Gmelin, 1774)</td>
<td>Phoenicurus</td>
<td>Црна црвенрепка</td>
<td>Гњездарица станарица у заштићеном подручју. Забиљежена 2 пара у 2015. г.</td>
<td>ЦЛ</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Saxicola rubetra (Linnaeus, 1758)</td>
<td>Saxicola</td>
<td>Обична траварка</td>
<td>Гњездарица селица ближе околнине.</td>
<td>ЦЛ</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Saxicola rubicola (Linnaeus, 1766)</td>
<td>Saxicola</td>
<td>Црноглава траварка</td>
<td>Гњездарица селица у заштићеном подручју. Забиљежена у 2012. г., касније није биљежена.</td>
<td>ЦЛ</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Aegithalos caudatus (Linnaeus, 1758)</td>
<td>Aegithalos</td>
<td>Дугорепа сјеница</td>
<td>Могућа гњездарица ЗП. Зими се друге популације хране у заштићеном подручју у мијешаним јатима.</td>
<td>ЦЛ</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Poecile palustris (Linnaeus, 1758)</td>
<td>Poecile</td>
<td>Сива сјеница</td>
<td>Могућа гњездарица ЗП, иначе гњездарица ближе околнине. Зими се друге популације хране у заштићеном подручју у мијешаним јатима.</td>
<td>ЦЛ</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Parus major (Linnaeus, 1758)</td>
<td>Parus</td>
<td>Велика сјеница</td>
<td>Гњездарица станарица у заштићеном подручју. Забиљежена 3 пара у 2015. г. Зими се друге популације хране у заштићеном подручју у мијешаним јатима.</td>
<td>ЦЛ</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Cyanistes caeruleus (Linnaeus, 1758)</td>
<td>Cyanistes</td>
<td>Плава сјеница</td>
<td>Гњездарица станарица у заштићеном подручју. Забиљежен 1 пар у 2015. г. Зими се друге популације хране у заштићеном подручју у мијешаним јатима.</td>
<td>ЦЛ</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Sitta europaea (Linnaeus, 1758)</td>
<td>Sitta</td>
<td>Бргљез</td>
<td>Гњездарица станарица у заштићеном подручју. Забиљежена 2 пара у 2015. г. Зими се друге популације хране у заштићеном подручју.</td>
<td>ЦЛ</td>
<td></td>
</tr>
<tr>
<td>Породица: Oriolidae</td>
<td>у мијешаним јатима.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-----------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45 Oriolus oriolus (Linnaeus, 1758)</td>
<td>вуга Гњездарица селица ближе околнине. ЦЛ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Породица: Laniidae</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>46 Lanius collurio (Linnaeus, 1758)</td>
<td>руси сврачак Гњездарица селица ближе околнине. Храни се у заштићеном подручју. ЦЛ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Породица: Corvidae</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>47 Garrulus glandarius (Linnaeus, 1758)</td>
<td>сојка Гњездарица станарица ближе околнине. Храни се и зимује у заштићеном подручју. ЦЛ</td>
</tr>
<tr>
<td>48 Pica pica (Linnaeus, 1758)</td>
<td>сврака Гњездарица станарица у заштићеном подручју. Забиљен 1 пар у 2015. г. ЦЛ</td>
</tr>
<tr>
<td>49 Corvus monedula (Linnaeus, 1758)</td>
<td>чавка Гњездарица станарица у заштићеном подручју. Забиљено 6 парова у 2015. г. ЦЛ</td>
</tr>
<tr>
<td>50 Corvus frugilegus (Linnaeus, 1758)</td>
<td>гачац Гњездарица станарица ближе околнине. Храни се у заштићеном подручју, често у јатима са другим вранама. ЦЛ</td>
</tr>
<tr>
<td>51 Corvus cornix (Linnaeus, 1758)</td>
<td>сива врана Гњездарица станарица у заштићеном подручју. Забиљено 5 парова у 2015. г. ЦЛ</td>
</tr>
<tr>
<td>52 Corvus corax (Linnaeus, 1758)</td>
<td>гавран Гњездарица ближе околнине ЗП. Храни се често у истр. подр. ЦЛ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Породица: Sturnidae</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>53 Sturnus vulgaris (Linnaeus, 1758)</td>
<td>чворак Гњездарица селица у заштићеном подручју. Забиљено 9 парова у 2015. г. ЦЛ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Породица: Passeridae</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>54 Passer domesticus (Linnaeus, 1758)</td>
<td>врабац покућар Гњездарица станарица у заштићеном подручју. Забиљено најмање 8 парова у 2015. г. ЦЛ</td>
</tr>
<tr>
<td>55 Passer montanus (Linnaeus, 1758)</td>
<td>полски врабац Гњездарица станарица у заштићеном подручју. Забиљено најмање 7 парова у 2015. г. ЦЛ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Породица: Fringillidae</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>56 Fringilla coelebs (Linnaeus, 1758)</td>
<td>зеба Гњездарица селица у заштићеном подручју. Забиљена 2 пара у 2015. г. ЦЛ</td>
</tr>
<tr>
<td>57 Carduelis carduelis (Linnaeus, 1758)</td>
<td>чешљугар Гњездарица станарица ближе околнине и могућа гњездарица у заштићеном подручју. ЦЛ</td>
</tr>
<tr>
<td>58 Carduelis chloris (Linnaeus, 1758)</td>
<td>зелентарка Гњездарица станарица у заштићеном подручју. Забиљен најмање 1 пар у 2015. г. ЦЛ</td>
</tr>
<tr>
<td>59 Serinus serinus (Linnaeus, 1766)</td>
<td>жутарица Гњездарица селица у заштићеном подручју. ЦЛ</td>
</tr>
</tbody>
</table>
Јовица Сјеничић, Бранислав Гашић, Гордана Ђурић, Сунчица Бодружић, Сњежана Хрнчић, Јасмин Пашић

Забиљежено 5 парова у 2015. г.

<table>
<thead>
<tr>
<th>Бр.</th>
<th>Породица: Emberizidae</th>
<th>Народни назив</th>
<th>Статус заштите</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>Emberiza citrinella (Linnaeus, 1758)</td>
<td>стрнадица жутовољка</td>
<td>ЦЛ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Гњездарица станарица ближе околнине и могућа гњездарица у заштићеном подручју.</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>Emberiza calandra (Linnaeus, 1758)</td>
<td>велика стрнадица</td>
<td>ЦЛ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Гњездарица селица ближе околнине.</td>
<td></td>
</tr>
</tbody>
</table>

Слика 2. Обична зеба, картирање парова пребројавањем пјевајућих мужјака (оригинал фото. Сјеничић Ј.)
Слика 3. Млади мале ушаре, врсте која се гнијездила у засаду боровца иза Факултета физичког васпитања и спорта (оригинал фото. Сјеничић Ј.)
Слика 4. Велика сјеница на гњезду у алеји платана (оригинал фото. Сјеничић Ј.)

Истаживањем фауне ситних сисара пронађено је најмање 16 врста (Слике 5 и 6) и то: јежева, шишмиша, мишоликих глодара, пухова и куна (Табела 2).

Табела 2. Диверзитет регистроване фауне сисара

<table>
<thead>
<tr>
<th>Бр.</th>
<th>Таксон</th>
<th>Народни назив</th>
<th>Напомена</th>
<th>Статус заштите</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Класа: Mammalia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ред: Erinaceomorpha</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Породица: Erinaceida</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Erinaceus roumanicus (Barrett-Hamilton, 1900)</td>
<td>источни бјелогруди јеж</td>
<td>Посматран често ноћу у алеји платана и на травњацима. Пронађен и угинуло у ботаничкој башти.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ред: Chiroptera</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Породица: Vespertilionida</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Myotis daubentonii (Kuhl, 1817)</td>
<td>водени шишмиш</td>
<td>Присутан у блиској околнини.</td>
<td>ЦЛ</td>
</tr>
<tr>
<td>3</td>
<td>Pipistrellus pipistrellus (Schreber, 1774)</td>
<td>мали шишмиш</td>
<td>Присутан у блиској околнини.</td>
<td>ЦЛ</td>
</tr>
<tr>
<td>4</td>
<td>Pipistrellus pygmaeus (Leach, 1825)</td>
<td>патуљасти шишмиш</td>
<td>Присутан у блиској околнини.</td>
<td></td>
</tr>
</tbody>
</table>
Заштита и управљање фауном заштићеног подручја за управљање ресурсима „Универзитетски град“ у Бањој Луци

<table>
<thead>
<tr>
<th>№</th>
<th>Врста</th>
<th>Опис</th>
<th>Присутност</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Pipistrellus kuhlii (Kuhl, 1817)</td>
<td>бјелоруби шишмиш</td>
<td>Вјероватно присутан у ЗП.</td>
</tr>
<tr>
<td>6</td>
<td>Pipistrellus nathusii (Keyserling&Blasius, 1839)</td>
<td>Натузијев шишмиш</td>
<td>Вјероватно присутан у ЗП.</td>
</tr>
<tr>
<td>7</td>
<td>Eptesicus serotinus (Schreber, 1774)</td>
<td>велики касни шишмиш</td>
<td>Присутан у ЗП.</td>
</tr>
<tr>
<td>8</td>
<td>Nyctalus noctula (Schreber, 1774)</td>
<td>ноћни шишмиш</td>
<td>Присутан у ближој околнини.</td>
</tr>
</tbody>
</table>

Ред: Rodentia
Породица: Cricetidae

<table>
<thead>
<tr>
<th>№</th>
<th>Врста</th>
<th>Опис</th>
<th>Присутност</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Ondatra zibethicus (Linnaeus, 1766)</td>
<td>бизамски пацов</td>
<td>Вјероватно присутан у води око Врбаса. Интродукована из С. Америке у 20. в.</td>
</tr>
<tr>
<td>10</td>
<td>Microtus arvalis (Pallas, 1778)</td>
<td>пољска волухарица</td>
<td>Изловљена помоћу клопки, прилично честа и бројна врста у истраживаном подручју.</td>
</tr>
</tbody>
</table>

Породица: Muridae

<table>
<thead>
<tr>
<th>№</th>
<th>Врста</th>
<th>Опис</th>
<th>Присутност</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Apodemus agrarius (Pallas, 1771)</td>
<td>пругаста пољска миш</td>
<td>Присутан у ближој околнини.</td>
</tr>
<tr>
<td>12</td>
<td>Rattus rattus (Linnaeus, 1758)</td>
<td>црни пацов</td>
<td>Вјероватно присутан у ЗП, као и у ближој околнини.</td>
</tr>
<tr>
<td>13</td>
<td>Rattus norvegicus (Berkenhout, 1769)</td>
<td>сиви пацов</td>
<td>Присутан у објектима у заштићеном подручју.</td>
</tr>
<tr>
<td>14</td>
<td>Mus musculus (Linnaeus, 1758)</td>
<td>кућни миш</td>
<td>Присутан у објектима у заштићеном подручју.</td>
</tr>
</tbody>
</table>

Породица: Gliroidae

<table>
<thead>
<tr>
<th>№</th>
<th>Врста</th>
<th>Опис</th>
<th>Присутност</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Glis glis (Linnaeus, 1766)</td>
<td>обични пух</td>
<td>Могуће присутан у ЗП, налази из ближе околнине.</td>
</tr>
</tbody>
</table>

Ред: Carinovra
Породица: Mustelidae

<table>
<thead>
<tr>
<th>№</th>
<th>Врста</th>
<th>Опис</th>
<th>Присутност</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Martes foina (Erxleben, 1777)</td>
<td>куна бјелица</td>
<td>Посматрана у ЗП и нађена једна јединка прегажена.</td>
</tr>
</tbody>
</table>

Слика 5. Трагови присуства ситних сисара у ЗП (оригинал фото. Сјеничић Ј.)

Слика 6. Изловљене јединке *Microtus arvalis* у ЗП (оригинал фото. Травар Н.)
Преглед регистроване фауне водоземаца и гмизаваца указује на 4 пронађене врсте водоземаца и 8 евидентираних врста гмизаваца (Слике 7 и 8) у оквиру заштићеног подручја (Табела 3).

Табела 3. Диверзитет регистроване фауне водоземаца и гмизаваца

<table>
<thead>
<tr>
<th>Бр.</th>
<th>Таксон</th>
<th>Народни назив</th>
<th>Напомена</th>
<th>Статус заштите</th>
</tr>
</thead>
<tbody>
<tr>
<td>Класа: Amphibia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ред: Caudata</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Породица: Salamandridae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Triturus dobrogicus (Kirizescu, 1903)</td>
<td>подунавски водењак</td>
<td>До 1972. сигурно се размножавао у барицама на Бањалучком пољу (Бранислав Гашић, усм. сапопшт.). Постоје доказни примјерци у Музеју РС.</td>
<td>ЦЛ, NT</td>
</tr>
<tr>
<td>Класа: Reptilia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ред: Anura</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Породица: Bufonidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Epidalea viridis (Laurenti, 1768)</td>
<td>зелена крастача</td>
<td>Један налаз из 2012. г.</td>
<td>ЦЛ</td>
</tr>
<tr>
<td>Породица: Ranidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Pelophylax ridibundus (Pallas, 1771)</td>
<td>велика зелена жаба</td>
<td>Присутна на Врбасу и у локвама.</td>
<td>ЦЛ</td>
</tr>
<tr>
<td>4</td>
<td>Rana dalmatina (Bonaparte, 1840)</td>
<td>шумска жаба</td>
<td>Повремено присутна.</td>
<td>ЦЛ</td>
</tr>
<tr>
<td>Класа: Chelonia (Testudines)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ред: Testudines</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Породица: Testudinidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Testudo hermanni (Gmelin, 1789)</td>
<td>обична чанчара</td>
<td>Биљежена у травњацима и ка обали Врбаса.</td>
<td>ЦЛ, NT</td>
</tr>
</tbody>
</table>
ЗАШТИТА И УПРАВЉАЊЕ ФАУНОМ ЗАШТИЋЕНОГ ПОДРУЧЈА ЗА УПРАВЉАЊЕ РЕСУРСИМА „УНИВЕРЗИТЕТСКИ ГРАД“ У БАЊОЈ ЛУЦИ

Слика 7. Зидни гуштер, најчешћа врста гмизавца у ЗП
(оригинал фото. Сјеничић Ј.)

Слика 8. Обична чанчара у ЗП
(оригинал фото. Гламочић Н.)

ДИСКУСИЈА И ЗАКЉУЧЦИ

Релативно мали простор заштићеног подручја „Универзитетски град“ (28 ha), који је још у склопу градског језгра Бање Луке, сразмјерно је богат животињским врстама. Разноврсност фауне може се објаснити богатим изворима хране, присуством различитих станишта као што су водена и травната станишта, жбуње и дрвеће, затим прируством различитих склоништа укључујући зграде и инфраструктуру, као и сразмјерно ниским степеном узнемиравања. Сва фауна заштићеног подручја није евидентирана, али је тренутна истраженост прилично добра, јер даје јаснију слику састава врста и солидну представу о еколошким факторима који владају у истраживаном подручју.

Од свих група најдетаљније је проучавана орнитофауна, која је једно представља и најважнију фаунистичку вриједност истраживаног подручја. Орнитофауна у заштићеном подручју заступљена је са преко 30 гњездарица у које спадају: патка глувара, фазан, сокол, ластавичар, кобац, голубови (градски голуб, гривнаш, гугутка), сове (мала ушара, шумска сова, ћук), дјетлићи и бројне врсте из реда птица пјевачица (сјенице, бргљези, грмуше, чворци, вране итд.). Поред гњездарица у заштићеном подручју присутне су бројне врсте приликом дневних и сезонских посјета и лутања, те врсте на зимовању и миграцији, посебно на обали Врбаса. Све регистроване врсте осим ждрала, који се сматра изумрлом гњездарицом, тренутне су гњездарице Босне и Херцеговине (Kotrošan и сар., 2007; Kotrošan, 2008). Већина врsta типична је за шумска станишта, вјероватно због доминације старијег дрвећа у истраживаном подручју. Неколико врста типичне су градске врсте, које се уједно и међу најбројнијим. Орао кликташ, забиљежен у прелету изнад ЗП, свакако је занимљива врста за налажење у било ком дијелу Босне и Херцеговине, с обзиром на податке о процјенама бројности парова (Kotrošan и сар., 2012), гдје се наводи да у БиХ гинјезди мање од 10 парова ове врсте.

И поред до данас спроведених истраживања орнитофауне, потребно је реализовати детаљнија истраживања током зимског периода и периода миграције, посебно у јесен,
Како би се утврдиле све врсте које прелијећу и зимују на простору ЗП. Битно је нагласити да је на подручју ЗП могуће очекивати и друге врсте које су на подручју градског језгра Бање Луке регистровали други аутори (Гашић, 2001; Цркновић, 2010).

Поред фауне птица треба споменути и разноврсност водоземаца и гмизаваца, те посебно фауне сисара, представљене различитим врстама шишмиша, инсектоједа, глодара и куна. За ове групе организама не постоје подаци о претходном истраживању у склопу урбаног подручја Бање Луке, па је самим тим још већи значај свих налаза у оквиру ових истраживања, али је тешко дати коментар или поређење у вези са квалитативним саставом врста. Иако су занимљиве и важне са аспекта заштите биодиверзитета у градовима, све ове три класе кичмењака значајне су у урбаним екосистемима, јер могу бити предатори штетних организама, па тако допринијети еколошкој стабилности урбаних подручја. Оквиру класе сисара, на истраживаном подручју могуће је очекивати и представнике ровки (ред Soricomorpha, породица Soricidae), с обзиром на повољне услове станишта и податке о распротрањености врста попут: Sorex minutus, Sorex araneus, Crocidura suaveolens, затим мишолике глодаре, у току зиме твора (Mustela putorius) и друге врсте куна, као и још неке врсте шишмиша.

Од свих група фауне, осим неких несистематских и случајних налаза, скоро да попупно изостају подаци о фауни бескичмењака, посебно о инсектима. Попуњавање празнина у њиховом познавању треба да буде на попису идућих корака, ако имамо у виду њихов огроман практични значај.

У погледу угрожености, сва регистрована авифауна има статус заштите преко Уредбе о црвеној листи Републике Српске, док лиска има статус скоро угрожене према IUCN. Код фауне сисара од укупно 16 регистрованих врста 6 врста су заштићене према ентитетској Уредби, док међународно угрожених нема. Све евидентиране врстe водоземаца и гмизаваца налазе се на ентитетској Уредби о црвеној листи, док се Triturus dobrogicus и Testudo hermanni налазе на IUCN листи угрожених врста са категоријом скоро угрожене.

Поред фундаменталног значаја биодиверзитета у ЗП, занимљива су и разматрања практичног значаја и корисности одређених врста кичмењака, као на примjer у биолошкој контроли бескичмењака штетних за украсну дендрофлору и пољопривредне биљке, а према неким студијама у биоконтролу од појединачних птица (McFarlane, 1976; Meyer, 2003; Tremblay, 1999; Waage, 2007). Побољшање услова за опстанак и довршење одређених представника фауне кичмењака у истраживаном подручју, обухвата низ активности у процесу планирања и извођења радова на изградњи, одржавању и коришћењу површина, објеката и инфраструктуре у заштићеном подручју. Ове активности подразумијевају задржавање садашњих зелених површина и изграђених површина у тренутном односу, остављање одређених економски и социјално „неинтересантних“ дијелова Заштићеног подручја под мањим степеном контроле човјека и изградњу одређених предмета и објеката који ће фауне надокнадити уништена микростаништа и „имитирати“ природне елементе екосистема који недостају. Под изградњом елемената екосистема подразумијева се садња разноврсног аутохтоног двеља и грмља (за клоништа и гнijежђе птица и других животиња), постављање вјештачких гнijежда, посебно за утврђење корисне врсте птица, које истовремено имају мању бројност у односу на капацитет средине тј. животни простор и изворе хране. Овде треба имати у...
виду да скоро увијек тренутни услови пружају могућности за опстанак птица под оним бројем који и јесте реалан у датом времену, осим онда када човјек због својих активности погоршава услове за опстанак оптималног броја „корисних“ врста. У овим активностима фундаментални проблем и јесте одредити тзв. повољно стање и оптимум бројности било које од врста, те се из ових разматрања намеће закључак да је неопходно проводити даље популациона истраживања и мониторинг биолошке разноврсности заштићеног подручја, а посебно циљних врста.

Према тренутним квалитативним и кванитативним подацима о фауни кичмењака, и разматрањима о њиховим храњибеним навикама, имајући у виду капацитет станишта, можемо рећи да би прије свега било пожељно имплементирати вјештачка гнијежда за ноћне грабљивице и сачувати их од узнемиравања, затим за дјетлиће са покушавањем привлачења ових птица зимском прихраном, као и постављањем гнијезда, зимских храњилица и љетних појилица за птице пјевачице, посебно за сјенице, бргљеза и чворке. Ове врсте дупљашица трпе одређени притисак током узнемиравања и уништавања мјеста за гнијежђење и исхрану тј. орезивања дрвећа и уништавања трулих грана и стабала због одржавања доброг здравственог стања украшне дендрофлоре и очувања безбједности за посјетиоце ЗП.

Непрактично је стварати посебне услове и инфраструктуру за помагање корисnim врстама херпетофауне и фауне сисара, а умјесто тога једноставније је не узнемиравати их и не уништавати постојећа станишта. Евентуално се могу конструисати кућица за неке врсте инсекта. За врсте које могу бити потенцијално шетне за човјека, као што су неки глодари и змије, потребно је промијенити политику и начин збрињавања грађевинског и комуналног отпада, с обзиром на то да погодује стварању склоништа и извора хране за наведене врсте.

Утврђени корисни инсекти треба да се подстичу привлачењем у заштићено подручје, а то је могуће урадити на сличан начин као и са кичмењакима, односно изградњом кућица за корисне инсекте и стварањем мјеста за склоништа и презимљавање.

ЛИТЕРАТУРА

1. Адамовић, Д.: Штиглиц (Carduelis carduelis) у авикултури, дипломски рад, Пољопривредни факултет, Универзитет у Бањој Луци, Бања Лука, 2014.
5. Црнковић, Н.: Орнитофауна ужег језгра града Бања Лука. Програм рада и зборник сажетака И Симпозијума еколога Републике Српске, Бања Лука 4 – 6. 11. 2010.
20. Сјеничић, Ј. (in litt.): Орнитофауна градских паркова Бањалуке. Друштво за истраживање и заштиту биодиверзитета, Бања Лука.

Примљено: 16.10.2015.
Одобрено: 27.03.2017.
LOLIĆ, Svjetlana, R. DEKIĆ, Maja MANOJLOVIĆ: ASSESSMENT OF WATER QUALITY OF WATERCOURSES IN THE AREA OF THE MUNICIPALITY MRKONJIĆ GRAD [University of Banja Luka, Faculty of Natural Sciences and Mathematics, Mladen Stojanovića 2, 78000 Banja Luka, Republic of Srpska, Bosnia and Herzegovina]

The paper presents the results of physical, chemical and microbiological analyzes of watercourses in the area of the municipality Mrkonjić Grad. Water samples were collected during 2014 at five locations: rivers Ponor, Zelenkovac, Sana, Medljanka and Crna rijeka. Based on physical, chemical and microbiological parameters, water of the river Ponor belong to the satisfying second class of surface water. Values of all observed general physical, chemical and sanitary-microbiological parameters indicated that the water of the watercourse Zelenkovac has exceptional quality. Only the values of electrical conductivity corresponded to the water of the second class, while values of all other parameters were within the limits for the first class of surface water. The river Sana at the sampling site due to slightly higher values of electrical conductivity, hypersaturation and abundance of some groups of microorganisms belong to the second class of surface water. The river Medljanka in all measurements had extremely high values of conductivity that corresponded even to the fourth class of surface water. The number of aerobic heterotrophs pointed to the water of the third class, while the abundance of other groups of bacteria was within the limits for the second class of surface waters. These four watercourses had a low concentrations of basic nutrients in the water, as well as relatively low values of the parameters which indicate loading of water with organic substances. The river Crna rijeka due to high values of conductivity, the concentration of suspended solids, BOD5 value, as well as due to the abundance of isolated groups of bacteria belong to the third class, while very high concentrations of ammonia and nitrite nitrogen indicated even a fourth class of surface water. The largest anthropogenic impact of all analysed watercourses in the area of the municipality Mrkonjić Grad suffer rivers Crna rijeka and Medljanka, while watercourse Zelenkovac has water of exceptional quality that is safe for the water supply.

Key words: water quality, physical and chemical analysis, microbiological analysis

The paper presents the results of physical, chemical and microbiological analyzes of watercourses in the area of the municipality Mrkonjić Grad. Water samples were collected during 2014 at five locations: rivers Ponor, Zelenkovac, Sana, Medljanka and Crna rijeka. Based on physical, chemical and microbiological parameters, water of the river Ponor belong to the satisfying second class of surface water. Values of all observed general physical, chemical and sanitary-microbiological parameters indicated that the water of the watercourse Zelenkovac has exceptional quality. Only the values of electrical conductivity corresponded to the water of the second class, while values of all other parameters were within the limits for the first class of surface water. The river Sana at the sampling site due to slightly higher values of electrical conductivity, hypersaturation and abundance of some groups of microorganisms belong to the second class of surface water. The river Medljanka in all measurements had extremely high values of conductivity that corresponded even to the fourth class of surface water. The number of aerobic heterotrophs pointed to the water of the third class, while the abundance of other groups of bacteria was within the limits for the second class of surface waters. These four watercourses had a low concentrations of basic nutrients in the water, as well as relatively low values of the parameters which indicate loading of water with organic substances. The river Crna rijeka due to high values of conductivity, the concentration of suspended solids, BOD5 value, as well as due to the abundance of isolated groups of bacteria belong to the third class, while very high concentrations of ammonia and nitrite nitrogen indicated even a fourth class of surface water. The largest anthropogenic impact of all analysed watercourses in the area of the municipality Mrkonjić Grad suffer rivers Crna rijeka and Medljanka, while watercourse Zelenkovac has water of exceptional quality that is safe for the water supply.

Key words: water quality, physical and chemical analysis, microbiological analysis

Key words: water quality, physical and chemical analysis, microbiological analysis

The paper presents the results of physical, chemical and microbiological analyzes of watercourses in the area of the municipality Mrkonjić Grad. Water samples were collected during 2014 at five locations: rivers Ponor, Zelenkovac, Sana, Medljanka and Crna rijeka. Based on physical, chemical and microbiological parameters, water of the river Ponor belong to the satisfying second class of surface water. Values of all observed general physical, chemical and sanitary-microbiological parameters indicated that the water of the watercourse Zelenkovac has exceptional quality. Only the values of electrical conductivity corresponded to the water of the second class, while values of all other parameters were within the limits for the first class of surface water. The river Sana at the sampling site due to slightly higher values of electrical conductivity, hypersaturation and abundance of some groups of microorganisms belong to the second class of surface water. The river Medljanka in all measurements had extremely high values of conductivity that corresponded even to the fourth class of surface water. The number of aerobic heterotrophs pointed to the water of the third class, while the abundance of other groups of bacteria was within the limits for the second class of surface waters. These four watercourses had a low concentrations of basic nutrients in the water, as well as relatively low values of the parameters which indicate loading of water with organic substances. The river Crna rijeka due to high values of conductivity, the concentration of suspended solids, BOD5 value, as well as due to the abundance of isolated groups of bacteria belong to the third class, while very high concentrations of ammonia and nitrite nitrogen indicated even a fourth class of surface water. The largest anthropogenic impact of all analysed watercourses in the area of the municipality Mrkonjić Grad suffer rivers Crna rijeka and Medljanka, while watercourse Zelenkovac has water of exceptional quality that is safe for the water supply.

Key words: water quality, physical and chemical analysis, microbiological analysis
вода. Ријека Сана је на мјесту узорковања због нешто виших вриједности електропроводљивости, хиперсатурације воде и због бројности појединих група микроорганизама одговарала другој класи површинских вод. Ријека Медљанка је у свим мјерењима имала изразито високу вриједност електропроводљивости која је одговарала чак четвртој класи, бројност аеробних психрофилних хетеротрофа указала је на воду треће класе, док је бројност осталих група бактерија била у оквиру друге класе површинских вод. Наведена четири водотока имала су ниске концентрације основних нутријената у води од којих зависи примарна продукција, као и релативно ниске вриједности параметара које указују на оптерећеност воде органичним материјама. Црна ријека због високе вриједности електропроводљивости, концентрације суспендованих материја, вриједности БПК₅, као и због бројности већине изолованих група бактерија одговарала водама треће класе, док су изразито високе концентрације амонијачног и нитритног азота указале на чак четврту класу површинских вод. Од свих посматраних водотока на подручју општине Мркоњић Град највећи антропогени утицај трпе Црна ријека и Медљанка, док Зеленковац има воду изузетног квалитета која је безбједна за водоснабдијевање.

Кључне ријечи: квалитет воде, физичко-хемијске анализе, микробиолошке анализе

УВОД

Мркоњић Град се налази у југозападном дијелу Републике Српске, на 591 m надморске висине. Окружен је са свих страна планинама: Лисина, Димитор, Чемерница, Мањача и Овчара (Ловреновић, 1973). Ово подручје карактерише велики број мањих и већих водотока који припадају сливовима Врбаса и Сана и представљају значајне водне ресурсе у локалним оквирима. Црна ријека је отока језера Балкана и након 17 km тока код мјеста Дабрац улијева се у Врбас. Ријека Понор извире код села Бјелајце, а понире испод југозападне падине Мањаче, да би се улијела у Врбас. У Доњој Пецкој налази се извор Сане, која неколико километара тече кроз мркоњићку општину и под именом Крупа улијева се у Врбас. У Доњој Пецкој набија у мјесту Крупа на Врбасу и под именом Крупа улијева се у Врбас. У Доњој Пецкој набија у мјесту Крупа на Врбасу и под именом Крупа улијева се у Врбас. У Доњој Пецкој набија у мјесту Крупа на Врбасу и под именом Крупа улијева се у Врбас. У Доњој Пецкој набија у мјесту Крупа на Врбасу и под именом Крупа улијева се у Врбас. У Доњој Пецкој набија у мјесту Крупа на Врбасу и под именом Крупа улијева се у Врбас. У строгом садржавању се извор Сане, која неколико километара тече кроз мркоњићку општину и послије укупног тока од преко 140 километара улијева се у Уну код Новог Града. У оближњем селу Медној извире Зеленковац чија вода се користи за водоснабдијевање Мркоњић Града. Зеленковац се улијева у ријеку Понор у Подрашничком пољу (Црногорац и сар., 2013). Будући да су неки водотоци под изразитим антропогеним утицајем, циљ истраживања био је да се утврди стање и квалитет воде водотока на подручју општине Мркоњић Град.

МАТЕРИЈАЛ И МЕТОДЕ

Узорковање је извршено током пролећа и љета 2014. године. За физичко-хемијску и микробиолошку анализу сакупљено је по 250 ml воде у асептичним условима у стерилин тамне стакlene бочице из површинског слоја, 10 до 15 cm испод површине. Узорци су затим транспортовани на леду на температури до +4˚C и у року од 24 сата извршена је њихова анализу у лабораторијама Природно-математичког факултета у Бањој Луци. Одређени су температура воде, pH вриједност, електропроводљивост, мутноћа, концентрација раствореног кисеоника, сатурација, концентрација суспендованих материја, концентрације раствореног амонијачног, нитратног и нитритног азота, сулфата
и ортофосфата, као и вриједност биохемијске потрошње кисеоника (BPK₅). На лицу мјеста је помоћу живиног термометра одређена температура воде, док су рН вриједност, електропроводљивост, концентрација раствореног кисеоника, сатурација и мутноћа воде одређени електрохемијски. Сви остали физичко-хемијски параметри одређени су спектрофотометријски помоћу спектрофотометра HACH DR2800. (DR 2800, user manual).

Бројност појединих група бактерија одређена је индиректним одглаживачким методама при чему су кориштене храњиве подлоге произвођача BioMérieux и HiMedia. Одређена је бројност укупних аеробних психрофилних хетеротрофа, укупних аеробних мезофила, укупних колиформних бактерија и колиформних бактерија фекалног поријекла, као и бројност фекалних стрептокока (Службени гласник Републике Српске, 42/01; Петровић и сар., 1998; Шкунца-Миловановић и сар., 1990).

РЕЗУЛТАТИ И ДИСКУСИЈА

Ријека Понор има благо алкалну воду добро засићену раствореним кисеоником (Табела 1). У пролетном периоду, након периода интензивних падавина, вода је била мутна и оптерећена суспендованим материјама услед испирања околног земљишта. Висока концентрација нерастворених органских и неорганских материја у води указивала је на трећу класу површинских вода, вриједности електропроводљивости, биолошке потрошње кисеоника и концентрације сулфата у води указивале су на другу, док су вриједности свих осталих посматраних физичко-хемијских параметара указивале на воду прве класе квалитета (Службени гласник Републике Српске, 42/01). Да Понор не припада водама треће класе може се закључити на основу анализе ових параметара у љетном периоду, када су при знатно нижем водостају измјерене вриједности мутноће и конценрације суспендованих материја одговарале водама друге класе. Поређењем са резултатима испитивања квалитета воде ријеке Понор која су вршена током 2010. године (Лолић и сар., 2010) може се закључити да није дошло до значајних промјена квалитета овог водотока. Чак су концентрације једињења азота, тј. нитратног и нитритног азота у води знатно ниже него у претходном периоду. На основу вриједности санитарно-микробиолошких параметара ријека Понор такође припада водама друге класе (Табела 2). У априлу је укупан број аеробних хетеротрофних психрофила одговарао првој класи воде, али је у јулу, при знатно нижем водостају и вишој температури воде, изолован знатно већи број бактерија из ове групе. Да вода припада другој класи показала су укупне и фекалне колиформне бактерије чија је бројност у оба узорка указала на умјерену оптерећеност Понора комуналним отпадним водама.

Зеленковац има хладну, благо алкалну воду, добро засићену раствореним кисеоником. Вриједности свих посматраних општих физичко-хемијских и санитарно-микробиолошких параметара указале су на воду изузетног квалитета. Само су вриједности електропроводљивости одговарале водама друге класе, док су вриједности свих осталих параметара биле у оквиру прве класе површинских вод. Повишена вриједност електропроводљивости показатељ је присуства растворених соли или јона у води и може зависити и од типа подлоге кроз коју водоток протиче (Далмација, 2000). Присуство амонијачног азота у води уопште није забиљежено, док су концентрације
осталих основних нутријената у води биле ниске. Бројност аеробних психрофилних хетеротрофа и концентрација ортофосфата у води били су изнад дозвољених граница за воду која се може користити за водоснабдијевање становништва, док су вриједности свих осталих параметара биле у дозвољеним границама (Службени гласник Републике Српске, 75/15). Вода Зеленковца иначе се користи за водоснабдијевање Мркоњић Града, а директно се користи и за водоснабдијевање туристичког објекта Зеленковац крај којег протиче. У односу на ранија истраживања (Лолић и сар., 2010), измерене су ниже концентрације свих облика азотних јединиња и сулфата, док је концентрација ортофосфата у води повишена.

Таблица 1. Физичко-хемијске карактеристике воде водотока на подручју општине Мркоњић Град

<table>
<thead>
<tr>
<th>параметар</th>
<th>Понор</th>
<th>Зеленковац</th>
<th>Сана</th>
<th>Медљанка</th>
<th>Црна ријека</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IV</td>
<td>VII</td>
<td>IV</td>
<td>VII</td>
<td>IV</td>
</tr>
<tr>
<td>температура (°C)</td>
<td>9,0</td>
<td>14,0</td>
<td>10,1</td>
<td>12,0</td>
<td>11,0</td>
</tr>
<tr>
<td>pH</td>
<td>8,26</td>
<td>8,10</td>
<td>8,60</td>
<td>8,27</td>
<td>8,41</td>
</tr>
<tr>
<td>електропроводљивост (µS/cm)</td>
<td>512</td>
<td>505</td>
<td>496</td>
<td>492</td>
<td>468</td>
</tr>
<tr>
<td>мутноћа (NTU)</td>
<td>13,11</td>
<td>7,90</td>
<td>3,30</td>
<td>3,34</td>
<td>2,15</td>
</tr>
<tr>
<td>суспендоване материје (mg/l)</td>
<td>7</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>О₂ (mg/l)</td>
<td></td>
<td></td>
<td>9,85</td>
<td>8,75</td>
<td>9,89</td>
</tr>
<tr>
<td>%</td>
<td></td>
<td></td>
<td>91,5</td>
<td>92,4</td>
<td>97,0</td>
</tr>
<tr>
<td>ВРК₃</td>
<td>2,99</td>
<td>2,85</td>
<td>1,95</td>
<td>1,60</td>
<td>1,39</td>
</tr>
<tr>
<td>нитрати (mg/l)</td>
<td>0,6</td>
<td>0,6</td>
<td>0,4</td>
<td>0,5</td>
<td>0,4</td>
</tr>
<tr>
<td>нитрити (mg/l)</td>
<td>0,008</td>
<td>0,006</td>
<td>0,004</td>
<td>0,002</td>
<td>0,003</td>
</tr>
<tr>
<td>амонијак (mg/l)</td>
<td>0,07</td>
<td>0,01</td>
<td>0,00</td>
<td>0,00</td>
<td>0,06</td>
</tr>
<tr>
<td>сулфати (mg/l)</td>
<td>55</td>
<td>58</td>
<td>1</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>ортофосфати (mg/l)</td>
<td>0,05</td>
<td>0,27</td>
<td>0,15</td>
<td>0,44</td>
<td>0,05</td>
</tr>
</tbody>
</table>

Узорковање ријеке Сане извршено је 4 километра од самог извора, на 300 метара узводно од ушћа ријеке Медљанке. На овом локалитету Сану одликује благо алкална и хладна вода чија температура је и у љетном периоду износила свега 12,4 ºС. Вода је добро засићена раствореним кисеоником и није оптерећена основним нутријентима. Од свих праћених физичко-хемијских параметара само су вриједности електропроводљивости константно биле у оквиру друге класе површинских води, док су вриједности осталих параметара указивале на воду прве класе. У јулу је вода била хиперсатурисана (сатурација 115,6%) због интензивног развоја субмерзних макрофита на мјесту узорковања. У истом периоду у води је био присутан и нешто већи број психрофилних и мезофилних
хетеротрофних бактерија, а изоловане су и укупне колиформне бактерије, чија је бројност одговарала другој класи површинских вода. Међутим, бројности изолованих фекалних колиформа и фекалних стрептококова нису показале да је ријека Сана на овом локалитету оптерећена отпадним комуналним водама.

Ријека Медљанка такође има благо јарко воду добро засићену раствореним кисеоником. Концентрација суспендованих материја и вртиједности турбидитета су повишене и указале су на трећу класу површинских вода, док је вртиједност електропроводљивости у свим узорцима била висока и одговарала је четвртој класи површинских вода. Наиме, Медљанка има мали проток воде и на мјесту узорковања пролази кроз насеље чије се отпадне воде из домаћинстава и штала излијевају у ријеку. Концентрације основних нутријената у води су ниске и одговарале су првој класи вода, што указује на то да су повишене вртиједности турбидитета и концентрације суспендованих материја последица оптерећености воде нераствореним органичним материјама. На повишену концентрацију органских материја у води, нарочито у љетном периоду, указују и вртиједности биолошке потрошње кисеоника, као и бројности аеробних мезофилних и психрофилних бактерија које су одговарале трећој класи површинских вода. Да је Медљанка у перманентном контакту са фекалним отпадним материјама указује бројност фекалних колиформа, који су индикатори свежег, као и бројност фекалних стрептококова, које су индикатори старијег фекалног загађења.

Табела 2. Микробиолошке карактеристике воде водотока на подручју општине Мркоњић Град

<table>
<thead>
<tr>
<th></th>
<th>Понор</th>
<th>Зеленковац</th>
<th>Сана</th>
<th>Медљанка</th>
<th>Црна ријека</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IV</td>
<td>VII</td>
<td>IV</td>
<td>VII</td>
<td>IV</td>
</tr>
<tr>
<td>песочнени</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>хетеротрофи (kol/ml)</td>
<td>552</td>
<td>9800</td>
<td>320</td>
<td>940</td>
<td>497</td>
</tr>
<tr>
<td>класа воде*</td>
<td>I</td>
<td>II</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>мезофилни хетеротрофи (kol/ml)</td>
<td>107</td>
<td>2400</td>
<td>7</td>
<td>100</td>
<td>30</td>
</tr>
<tr>
<td>укупни колиформи (kol/100 ml)</td>
<td>58</td>
<td>330</td>
<td><1</td>
<td><1</td>
<td>1</td>
</tr>
<tr>
<td>класа воде*</td>
<td>II</td>
<td>II</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>фекални колиформи (kol/100ml)</td>
<td>29</td>
<td>100</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>класа воде*</td>
<td>II</td>
<td>II</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>фекални стрептококе (kol/100 ml)</td>
<td>5</td>
<td>15</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>класа воде</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
</tbody>
</table>

Црна ријека изложена је дејству читавог низа антропогених утицаја: она је примарни реципијент отпадних вода насеља кроз које протиче, уз сам водоток се налази.
неколико дивљих депонија, а оптерећују је и пољопривредне активности и индустријске отпадне воде (Црногорач и сар., 2013). Вода је благо алкална и добро засићена раствореним кисеоником. Повишене вриједности електропроводљивости, концентрација суспендованих материја и биолошка потрошња кисеоника одговарају III класи површинских вода и показатељ су оптерећења воде како минералним, тако и органским материјама. Иразито висока концентрација амонијачног и нитритног азота у води сврставају Црну ријеку у чак IV класу површинских вода. Висока концентрација присутних азотних једињења и ортофосфата послећица је оптерећења воде комуналним отпадним водама и спирања околног земљишта на ком се проводе различите агрутехничке мјере. На оптерећеност воде органским материјама фекалог вирови је показатељ континуираног оптерећења водотока комуналним отпадним водама.

ЗАКЉУЧАК

Водотоци који се налазе на подручју Мркоњић Града у различитим мјерама изложени су антропогеним утицајима. Воду најбољег квалитета има Зеленковац чија је вода здравствено безбједна и може се користити за пиће, док Медљанка и Црна ријека имају воду знатно лошијег квалитета. Медљанка је оптерећена углавном органским материјама које у водоток доспијевају са комуналним отпадним водама, док Црна ријека трпи различите антропогене утицаје и оптерећена је како органским тако и неорганским материјама. Ријеке Понор и Сана имају воду задовољавајућег квалитета.

ЛИТЕРАТУРА

8. Црногорач, Ч., Трбић, Г., Рајчевић, В., Декић, Р., Пешевић, Д., Лолић, С., Милошевић, А., Челебић, М.: Ријечна мрежа општине Мркоњић Град
(физичкогеографска и еколошка истраживања), Географско друштво Републике Српске, Бања Лука, 2013.

PEŠEVIĆ, Dušica, Nataša Marković: WATER QUALITY OF ARTIFICIAL LAKE DRENOVA
[University of Banja Luka, Faculty of Sciences and Mathematics, Mladena Stojanovića 2, 78000 Banja Luka, Republic of Srpska, Bosnia and Herzegovina]

Water from the Artificial Lake Drenova, used for water supply of the Town Prnjavor and its suburbs, is prohibited as drinkable from 2003. The aim of the expert work is to identify potential contaminants in the area, as well as assessment of the suitability of the water for water supply. Based on the results of physico-chemical and microbiological analysis, an overview of water quality of Artificial Lake Drenova, for the period from 2011 to 2013, and from 2015 to 2016, is provided. From the aspect of physico-chemical and microbiological testing, the quality of water from the Lake Drenova is not on the satisfactory level. The most frequent parameters of physical and chemical defects is increased concentration of iron, manganese, lead, aluminum, ammonia, nitrate, nitrite, as well as increased presence of potassium permanganate. The risks to water quality were most often indicated by results of testing of total coliform bacteria, total aerobic mesophilic bacteria, streptococci of faecal origin, sulphate-reducing clostridia and enterococci. In September 2013 and in September and December 2015 the presence of pesticides was recorded.

Key words: Artificial Lake Drenova, water quality, physico-chemical analysis, microbiological analysis, pesticides, contamination

Abstract

Water from the Artificial Lake Drenova, used for water supply of the Town Prnjavor and its suburbs, is prohibited as drinkable from 2003. The aim of the expert work is to identify potential contaminants in the area, as well as assessment of the suitability of the water for water supply. Based on the results of physico-chemical and microbiological analysis, an overview of water quality of Artificial Lake Drenova, for the period from 2011 to 2013, and from 2015 to 2016, is provided. From the aspect of physico-chemical and microbiological testing, the quality of water from the Lake Drenova is not on the satisfactory level. The most frequent parameters of physical and chemical defects is increased concentration of iron, manganese, lead, aluminum, ammonia, nitrate, nitrite, as well as increased presence of potassium permanganate. The risks to water quality were most often indicated by results of testing of total coliform bacteria, total aerobic mesophilic bacteria, streptococci of faecal origin, sulphate-reducing clostridia and enterococci. In September 2013 and in September and December 2015 the presence of pesticides was recorded.

Key words: Artificial Lake Drenova, water quality, physico-chemical analysis, microbiological analysis, pesticides, contamination
УВОД

Акумулационо језеро Дренова изграђено је 1978. године преграђивањем рјечице Вијаке у њеном горњем току. Језеро је удаљено од градског насеља Прњавор 6 km и захвата површину од 110 ha. Налази се у сеоском подручју Дренове и Доњих Вијачана. Првобитна намјена изградње акумулације језера Дренова била је защита слива Вијаке од великих вода и обезбеђивање довољне количине воде за рибњак Прњавор. Вода из језера Дренова од 1986. године користи се као водозахват сирове воде која се прерађује и пречишћава у систему фабрике воде у Кремни. Прерађена вода дистрибуира се потрошачима у дио градског насеља Прњавор и у насељена мјеста Јасик, Лужани, Коњуховци, Ратковац, Околица и Доња Мравица. Такође, језеро Дренова служи као спортско-риболовно подручје. С обзиром на то да се вода из језера Дренова користи за водоснабдјевање, циљ рада био је да се укаже на чињеницу да вода из ове акумулације није безбједна за пиће, као и на важност успостављања системске контроле квалитета воде (мониторинг систем) како би се могле предузети адекватне мјере заштите.

МАТЕРИЈАЛ И МЕТОДЕ

За одређивање физичко-хемијских и микроbióлошках параметара коришћене су методе испитивања прописане Правилником о начину узимања узорака и методама за лабораторијску анализу воде за пиће („Службени лист СФРЈ“, број 33/87) и Правилником о хигијенској исправности воде за пиће („Службени гласник Републике Српске“, број 40/03, за непрестпшћене воде).

Оцјена квалитета воде акумулационог језера Дренова вршена је према Уредби о класификацији вода и категоризацији водотока („Службени гласник Републике Српске“, број 42/01).

<table>
<thead>
<tr>
<th>Параметар</th>
<th>Период испитивања параметра са методом испитивања</th>
</tr>
</thead>
<tbody>
<tr>
<td>Температура (°C)</td>
<td>SM 2550BAPHA AWWA WEF 2012; SMEWW 19th 2550 B</td>
</tr>
<tr>
<td>Резидуални хлор (mg/l)</td>
<td>UMHH 024; UMHH 039</td>
</tr>
<tr>
<td>--</td>
<td>--------------</td>
</tr>
<tr>
<td>Букетне колоидне бактерије</td>
<td>100 ml</td>
</tr>
<tr>
<td>* Escherichia coli</td>
<td>100 ml</td>
</tr>
<tr>
<td>Број колонија аеробних мезофила на 37 °С</td>
<td>1 ml</td>
</tr>
<tr>
<td>Број колонија аеробних мезофила на 22 °С</td>
<td>1 ml</td>
</tr>
<tr>
<td>* Enterococci</td>
<td>100 ml</td>
</tr>
<tr>
<td>Суфиторедукујуће кластери</td>
<td>100 ml</td>
</tr>
<tr>
<td>Колоидне бактерије фекалног поријекла</td>
<td>100 ml</td>
</tr>
</tbody>
</table>

Квалитет воде акумулационог језера Дренова

<table>
<thead>
<tr>
<th>Качеству воде акумулационог језера Дренова</th>
</tr>
</thead>
<tbody>
<tr>
<td>Букету (°Со-Пт скале)</td>
</tr>
<tr>
<td>Мирис</td>
</tr>
<tr>
<td>Укус</td>
</tr>
<tr>
<td>Мутноћ (NTU)</td>
</tr>
<tr>
<td>рН-вриједност</td>
</tr>
<tr>
<td>НРК-перманганатни (mg/l)</td>
</tr>
<tr>
<td>Амонијак (mg/l)</td>
</tr>
<tr>
<td>Нитрити, NO₂⁻ (mg/l)</td>
</tr>
<tr>
<td>Нитрати, NO₃⁻ (mg/l)</td>
</tr>
<tr>
<td>Хлориди (mg/l)</td>
</tr>
<tr>
<td>Електропроводљивост на 20 °C (µScm⁻¹)</td>
</tr>
<tr>
<td>Гвожђе, Fe (mg/l)</td>
</tr>
<tr>
<td>Манган, Mn (mg/l)</td>
</tr>
<tr>
<td>Олово, Pb (mg/l)</td>
</tr>
<tr>
<td>Алуминијум, Al (mg/l)</td>
</tr>
<tr>
<td>Детерџенти (анјонски) (mg/l)</td>
</tr>
<tr>
<td>Растворени кисеоник (mg/l)</td>
</tr>
<tr>
<td>% сатурације</td>
</tr>
<tr>
<td>Остатак послије испарења на 105 °C (mg/l)</td>
</tr>
<tr>
<td>Остатак послије испарења на 180 °C (mg/l)</td>
</tr>
</tbody>
</table>

Извор: ЈЗУ Институт за јавно здравство Бања Лука, 2011–2013, 2015–2016
Правилник о начину узимања узорака и методама за лабораторијску анализу воде за пиће („Службени лист СФРЈ“, број 33/87)

Градски завод за јавно здравље Београд обавио је испитивање укупних и појединачних пестицида у септембру и децембру 2015. године (Табела 3).

Завод за јавно здравље Суботица обавио је испитивање пестицида резидуе органохлорних инсектицида у септембру 2013. године (Табела 4).

Табела 3. Испитивани укупни и појединачни пестициди са методима испитивања

<table>
<thead>
<tr>
<th>Параметар (µg/l)</th>
<th>Стандард/Метод</th>
</tr>
</thead>
<tbody>
<tr>
<td>Укупни пестициди</td>
<td>VDM 0005⁵</td>
</tr>
<tr>
<td>Алахлорⁱ,²</td>
<td>VDM 0005⁵</td>
</tr>
<tr>
<td>Алдрин/Диелдрин</td>
<td>VDM 0005⁵</td>
</tr>
<tr>
<td>Атразинⁱ,²</td>
<td>VDM 0005⁵</td>
</tr>
<tr>
<td>Бентазонⁱ,²</td>
<td>SRPS ENISO 15913:09</td>
</tr>
<tr>
<td>DDT²</td>
<td>VDM 0005⁵</td>
</tr>
<tr>
<td>2,4-D⁰,²</td>
<td>SRPS ENISO 15913:09</td>
</tr>
<tr>
<td>Хексахлорбензол</td>
<td>VDM 0005⁵</td>
</tr>
<tr>
<td>Хептахлор/Хептахлорепоксид</td>
<td>VDM 0005⁵</td>
</tr>
<tr>
<td>Хлоротохлорон²</td>
<td>VDM 0005⁹⁹⁹</td>
</tr>
<tr>
<td>Изопротурон²</td>
<td>VDM 0005⁹⁹⁹</td>
</tr>
<tr>
<td>Карбофуран¹,²</td>
<td>VDM 0005⁹⁹⁹</td>
</tr>
<tr>
<td>Линдан¹,²</td>
<td>VDM 0005⁵</td>
</tr>
<tr>
<td>MCPA¹,²</td>
<td>SRPS ENISO 15913:09</td>
</tr>
<tr>
<td>Метолахлор¹,²</td>
<td>VDM 0005⁵</td>
</tr>
<tr>
<td>Молнилат¹,²</td>
<td>VDM 0005⁵</td>
</tr>
<tr>
<td>Пентахлорфенол²</td>
<td>VDM 0010¹⁰</td>
</tr>
<tr>
<td>Перметрин¹,²</td>
<td>VDM 0005⁵</td>
</tr>
<tr>
<td>Пиперидин¹,²</td>
<td>VDM 0005⁹⁹⁹</td>
</tr>
<tr>
<td>Симазин¹,²</td>
<td>VDM 0005⁵</td>
</tr>
<tr>
<td>Трифлуралин¹,²</td>
<td>VDM 0005⁵</td>
</tr>
<tr>
<td>Дес этил тербутилазин¹,²</td>
<td>VDM 0005⁹⁹⁹</td>
</tr>
<tr>
<td>Тербутилазин¹,²</td>
<td>VDM 0005⁹⁹⁹</td>
</tr>
<tr>
<td>Пендиметалин¹</td>
<td>VDM 0005⁹⁹⁹</td>
</tr>
<tr>
<td>Диоксидпроп²</td>
<td>SRPS ENISO 15913:09</td>
</tr>
</tbody>
</table>
РЕЗУЛТАТИ И ДИСКУСИЈА

Периодично испитивање квалитета воде акумулационог језера Дренова, са аспекта физичко-хемијске (Табела 5) и микробиолошке анализе, у периоду од 2011. до 2013. године и током 2015. и 2016. године, обавила је Јавна здравствена установа Институт за јавно здравство Бања Лука.

За анализу физичко-хемијских параметара узортовање је извршено:
- по једном у августу 2011. године, у новембру 2012. године и у септембру 2013. године,
- три пута мјесечно у 2015. години (јун–децембар), изузев јула и октобра када је узортовање извршено по два пута и јуна када је узортовање извршено једном,
- три пута мјесечно у 2016. години (јануар–октобар), изузев августа када је узортовање извршено два пута.

Упоредо са узортовањем за физичко-хемијске анализе, на исти начин вршено је и узортовање воде за испитивање микробиолошких показатеља квалитета акумулации, изузев септембра 2015. године када је узортовање вршено једном до три пута, зависно од испитиваних параметара.

Табела 4. Испитиван пестицид са методом испитивања (Извор: Завод за јавно здравље Суботица, 2013)

<table>
<thead>
<tr>
<th>Параметар (µg/l)</th>
<th>Метод</th>
</tr>
</thead>
<tbody>
<tr>
<td>Резидуе органохлорних инсектицида</td>
<td>DM-25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Параметри</th>
<th>Година узортовања воде</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH-вириједност</td>
<td>8.24</td>
</tr>
<tr>
<td>НРК-перманганатни (mg/l)</td>
<td>15.1</td>
</tr>
<tr>
<td>Амонијак (mg/l)</td>
<td>< 0.05</td>
</tr>
<tr>
<td>Нитрити, NO2- (mg/l)</td>
<td>0.006</td>
</tr>
<tr>
<td>Нитрати, NO3- (mg/l)</td>
<td>< 2.0</td>
</tr>
<tr>
<td>Хлориди (mg/L)</td>
<td>7.4</td>
</tr>
<tr>
<td>Електропроводљивост на 20 °C (µScm−1)</td>
<td>423</td>
</tr>
<tr>
<td>Гвожђе, Fe (mg/l)</td>
<td>0.10</td>
</tr>
<tr>
<td>Манган, Mn (mg/l)</td>
<td>0.03</td>
</tr>
<tr>
<td>Олово, Pb (mg/l)</td>
<td>< 0.005</td>
</tr>
<tr>
<td>Алуминијум, Al (mg/l)</td>
<td>0.32</td>
</tr>
<tr>
<td>Детерџенти (анјонски) (mg/l)</td>
<td>< 0.05</td>
</tr>
</tbody>
</table>

pH представља физичку карактеристику свих вода/раствора, релативна је мјера ацидитета или алкалитета вода. pH вириједност утиче на понашање неколико важних параметара квалитета воде. Од њене вириједности зависи токсичност амонијака,
ефикасност дезинфекције хлором, растворљивост метала и растворљивост и доступност нутријената акватичним организмима. Повишене pH вриједности узрокују повећање концентрације амонијака, па је на pH изnad 9, амонијак као токсична компонента доминантан. За ефикасну дезинфекцију хлором, pH би требало да буде мањи од 8, међутим, вода са нижим pH вриједностима од 7 је корозивна, па се pH вриједност воде на уласку у дистрибутивни систем мора контролисати да би се спријечила корозија дистрибутивног система. Уколико се не спријечи корозивност воде на уласку у дистрибутивни систем, може доћи до контаминације воде за пиће што би изазвало негативне ефекте на укус и изглед воде (Далмација и сар., 2012).

Током 2015. године, измерена pH вриједност узетих узорака сирове воде на првом мјерењу кретала се од 7,0 до 8,26, на другом мјерењу од 7,79 до 8,10, а на трећем мјерењу од 6,90 до 8,11. Минимална pH вриједност од 6,90 измерена је у септембру, а максимална од 8,26 у новембру. Током 2016. године, измерена pH вриједност узетих узорака сирове воде на првом мјерењу кретала се од 7,82 до 8,48, на другом мјерењу од 7,73 до 8,25, а на трећем мјерењу од 7,75 до 8,30. Минимална pH вриједност од 7,73 измерена је у јулу, а максимална од 8,48 у јуну (Извјештај Института за јавно здравство Бања Лука, 2015–2016).

Тешки метали доспијевају у акумулацију растворених минерала, спирањем пољопривредног земљишта (као саставни дио ђубрива, пестицида), отпадним водама из пољопривреде, домаћинстава и каменолома “Грич” и “Љубић”. Концентрација гвожђа измерена у новембру 2012. године задовољава услове IV класе квалитета површинских вода. У јулу 2015. године, у једном од два узорка, забиљежена је повећана концентрација манганана од 0,32 mg/l која одговара IV класи квалитета површинских вода. На основу измерених концентрација олова у новембру 2012. године и септембру 2013. године, акумулација се може сврстати у воде IV класе (Табела 5).

На нижим pH вриједностима, метали су токсичнији, јер су тада и растворљивији, односно може доћи до ослобађања метала који су адсорбовани на честицама седимента и њиховог превођења у водену фазу. Такође, високе вриједности pH могу узроковати ослобађање металних јона (нпр. алуминијума) из њихових комплекса са другим катјонима. Једном мобилисани метали доступни су организмима (Далмација и сар., 2012).

Алуминијум може бити присутан у води, киселој сировој води, услед растворовања природних минерала (Агаба и сар., 2014). Концентрације алуминијума измерене у новембру 2012. године и септембру 2013. године задовољавају услове IV, односно III класе квалитета површинских вода (Табела 5.).

Детерџенти су органске материје које представљају смјесу више супстанца. Појава детерџената у води изазива промјене њених физичких и хемијских особина. Ова једињења не могу се бактеријски разградити, па може доћи до стварања пјене која отежава растворавање кисеоника у води и спречава промор пренос светлости што је опасно по биоценоzu вода. На основу концентрације детерџената измерених у 2012. и 2013. години, акумулација се може сврстати у воде I класе.
Квалитет воде акумулационог језера Дренова

Као индикатор органског загађења воде користе се хемијска и биохемијска потрошња кисеоника. Хемијска потрошња кисеоника (НРК) је количина кисеоника која се утроши за потпуну оксидецију органске супстанце у води и представља мерило загађености воде органском супстанцом. Оксидација се изводи у киселој средини са калијум-перманганатом или калијум-дихроматом. Потрошња калијум-перманганата (КМnO₄) или калијум-дихромата (К₂Cr₂O₇) је утолико већа, уколико вода садржи више органских супстанца.

Вриједности за НРК-перманганатну оксидацију у периоду од 2011. до 2013. године, задовољавају услове IV класе квалитета површинских вода (Табела 5). У 2015. години, резултати за НРК-перманганатну оксидацију у 5 узорака (29,41%) од 17 испитаних узорака не испуњавају вриједности за I и II класу квалитета површинских вода (4 узорка задовољавају услове III класе, а 1 узорак задовољава услове IV класе квалитета површинских вода) (Слика 1). У тој години, минимальна вриједност забележена је у октобру од 3,0 mg/L (прво мјерење), a максимална вриједност од 16,0 mg/L у јулу (друго мјерење). У 2016. години, резултати за НРК-перманганатну оксидацију свих 29 испитаних узорака у границама су прописаних вриједности за I класу квалитета површинских вода (Слика 2), када су се вриједности кретале у распону од 1,7 mg/L до 4,6 mg/L.

Азотне материје доспјевају у воду из више извора укључујући атмосферу, легуминозне биљке, биљни отпад, животињски екскремент, канализацију, азотна ђубрива и индустријске отпадне воде. Амонијак је продукт разградње органских материја. Облик у коме се амонијак може наћи у води (у слободном облику као NH₃ или јонизованом као NH₄⁺ у благо закишељеним водама) зависи од рН вриједности воде (Далмација и сар., 2012).

Одступања од II класе квалитета површинских вода у погледу вриједности за амонијак, забиљежена су у 2015. години у 4 узорка (23,53%) од 17 испитаних узорака (3 узорка задовољавају услове III класе, а 1 узорак задовољава услове IV класе квалитета површинских вода) (Слика 1). Нитрити су интермедијери оксидације амонијака до
нитрата и високе концентрације нитрата у води указују на загађење. Одступања од II класе квалитета површинских вода у погледу вриједности за нитрате, забиљежена су у новембру 2012. године (узорак задовољава услове IV класе квалитета површинских вода) (Тabela 5), затим, у 2015. години у 10 узорака (58,82%) од 17 испитаних узорака (3 узорка задовољавају услове III класе, а 7 узорака задовољавају услове IV класе квалитета површинских вода) (Слика 1) и у 2016. години у 20 узорака (68,97%) од 29 испитаних узорака (9 узорака задовољавају услове III класе, а 11 узорака задовољавају услове IV класе квалитета површинских вода) (Слика 2). Високе концентрације нитрата у води у већини случајева су последица спирања са пољопривредног земљишта где се користе азотна ђубрива. Одступања од II класе квалитета површинских вода у погледу вриједности за нитрате, забиљежена су у 2016. години у 2 узорка (6,90%) од 29 испитаних узорака (1 узорак задовољава услове III класе, а други узорак задовољава услове V класе квалитета површинских вода) (Слика 2).

Слика 2. Процентуална припадност класи квалитета воде акумулације Дренова према одређеним параметрима у периоду јануар–октобар 2016. године (Извор: ЈЗУ Институт за јавно здравство Бања Лука, 2016)

Хлориди у слатким водама могу потицати од земљишта и стијена, морских пара и отпадних вода. При концентрацијама изnad 250 mg/l, вода почиње да има слан укус, који постаје све интензивнији са порастом концентрације хлорида (Далмација и сар., 2012). Измерене петогодишње вриједности хлорида у свим узорцима воде кретале су се у распону од 4,1 mg/l до 8,1 mg/l, што је у оквиру дозвољених граница (Тabela 5, Слике 1 и 2) (Извјештај Института за јавно здравство Бања Лука, 2011–2013, 2015–2016).

Електропроводљивост бројно изражава способност посматраног узорка воде да проводи електричну струју. Ова способност воде у директној је вези са присуством јона у води, односно њиховом концентрацијом и температуром воде. Повећана вриједност ovog параметра показатељ је да је вода загађена.

Измерене петогодишње вриједности за електропроводљивост воде у свим узорцима не прелазе прописане вриједности за II класу квалитета површинских вода
Квалитет воде акумулационог језера Дренова

Мутноћа је физички показатељ квалитета воде. Јавља се као посљедица присуства колоидно растворених честица и суспензија нерастворених супстанци, организко и неорганског поријекла (честица глине, муља, планктона и организама микроскопских димензија). Замућење воде може бити природно (у услед обилних киша које интензивирају ерозију) и антропогено (испуштање отпадних вода) (Црногорац, 2006).

Резултати микробиолошких анализа (Табела 6) санитарног стана воде користе се у процјени ризика по здравље људи при њеном коришћењу, као и у процјени погодности вода за водоснабдијевање и праћењу ефикасности пречишћавања воде за пиће (Ђукић и сар., 2000).

<table>
<thead>
<tr>
<th>Година узорковања воде</th>
<th>Укупан број испитиваних узорака</th>
<th>Микробиолошка неисправност</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Број</td>
<td>%</td>
</tr>
<tr>
<td>2011.</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>2012.</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>2013.</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>2015.</td>
<td>110</td>
<td>65</td>
</tr>
<tr>
<td>2016.</td>
<td>174</td>
<td>122</td>
</tr>
</tbody>
</table>

Колиформне бактерије фекалног поријекла потичу од људског и животињског отпада. Укупне колиформне бактерије укључују колиформне бактерије фекалног поријекла као и друге бактерије сличних особина које се налазе у земљишту и које нису
Душица Пешић, Наташа Марковић

фекалне (Далмација и сар., 2012). Најзначајнији микробиолошки индикатори фекалног загађења су: *Escherichia coli*, колиформне бактерије фекалног поријекла и друге колиформне бактерије, фекалне стрептококе као и сулфиторедукујуће клостридије (Агбаба и сар., 2014).

Микроорганизми, индикатори фекалног загађења, истовремено представљају индикацију могућег присуства патогених микроорганизама. Утврђивање организама фекалног загађења најосјетљивије је и најспецифичнији начин процјењивања хигијенског квалитета воде. Од колиформних бактерија, *Escherichia coli* је најпречиснији индикатор фекалног загађења (Ђукић и сар., 2000).

Одређивање ентерокока, индикатора фекалног загађења, важно је за утврђивање статуса вода које не садрже *E. coli*, али садрже велики број колиформа (Далмација и сар., 2012).

Табела 7. Резултати испитивањих микробиолошких параметара (Извор: ЈЗУ Институт за јавно здравство Бања Лука 2011–2013)

<table>
<thead>
<tr>
<th>Параметри</th>
<th>Година узорковања воде</th>
</tr>
</thead>
<tbody>
<tr>
<td>Укупне колиформне бактерије</td>
<td>> 16</td>
</tr>
<tr>
<td>Колиформне бактерије фекалног поријекла</td>
<td>су нађене</td>
</tr>
<tr>
<td>Укупан број аеробних мезофилних бактерија</td>
<td>250</td>
</tr>
<tr>
<td>Стрептококе фекалног поријекла</td>
<td>0</td>
</tr>
<tr>
<td>Сулфиторедукујуће клостридије</td>
<td>0</td>
</tr>
<tr>
<td>Протеус врсте</td>
<td>0</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>0</td>
</tr>
</tbody>
</table>

Слика 4. Структура разлога микробиолошке неисправности воде акумулације Дренова у 2015. години
Квалитет воде акумулационог језера Дренова

Микробиолошке анализе воде акумулације Дренова показале су да су у акумулацији присутне одређене бактерије (Табела 7, Слике 4 и 5) које се не би смјеле наћи у води након пречишћавања.

Пестициди (појединачни и укупни) су синтетичка једињења која у воду доспијевају спирањем са пољопривредних површин, акцидентним испуштањима, депозицијом аеросола и честичних материја путем падавина, као и примјеном пестицида за контролу штеточина и вектора болести. Ова једињења изазивају смртност или озбиљне репродуктивне и генетичке проблеме у фауни. Посједују канцерогене, мутагене и тератогене особине. Као такви, они су веома непожељни у водама у било ком облику. Такође, имају способност биоакумулације у рибама или другим живим организмима, као и задржавања у седименту (Далмација и сар., 2012).

У испитиваном периоду, у акумулацијном језеру Дренова, забиљежено је присуство пестицида. За већину пестицида није утврђена тачна концентрација, осим концентрације укупних пестицида, метолахлора, тербутилазина, дес етил тербутилазина, бентазона и алдрин/диелдрине. Максималне концентрације забиљежене су у септембру 2015. године и то укупних пестицида од 0,825 µg/l, метолахлора од 0,248 µg/l, тербутилазина од 0,388 µg/l и дес етил тербутилазина од 0,178 µg/l. У септембру 2015. године, концентрација алдрин/диелдрине је износила 0,011 µg/l, а у децембру исте године, концентрација бентазона износила је 0,07 µg/l (Извјештај о испитивању Градског завода за јавно здравље Београд, 2015).

Познато је да су акумулације формиране преграђивањем природних водотока угрођене наносом као крајњим продуктом ерозије. Иако је у пројектној фази изградње акумулације Дренова био предвиђен читав низ антиерозионих мјера у смислу заштите од засипања, ни након 30 година експлоатације оне нису реализоване. Од 1978. до 2011. године, простор акумулације Дренова засути је са 348.216,00 m³ материјала, чиме је укупни корисни простор смањен за 5,81% (Тошић, 2012). Посебан интерес за нанос у акумулацији веже се за изворе загађења и транспорт загађујућих материја као што су тешки метали, пестициди и остала токсичне честице које утичу на опстанак живих бића у води и употребу воде за водоснабдијевање. Вода која се уводи у технолошки поступак прераде,
Душица Пешевић, Наташа Марковић

обогаћена великим концентрацијом седимената, представља кључни проблем технолошке припреме воде за пиће и њене дистрибуције до крајњих корисника у потребној количини и временском интервалу испоруке.

Додатни проблем представља чињеница да око акумулације Дренова нису успостављене зоне санитарне заштите (Стратегија развоја општине Прњавор за период 2012–2020.). Подручје око језера насељено је, а становништво се бави углavnom пољопривредном производњом. Разне хемикалије и пестициди (вјештачка ђубрива, органофосфорни инсектициди и други пестициди) који се користе у пољопривреди доспијевају у језеро испирањем земљишта, што уз санитарно-фекалне воде из домаћинства и стаја за узгој животиња, као и отпадних вода каменолома „Грич“ и „Љубић“, представља значајан извор загађивања воде у акумулацији Дренова.

ЗАКЉУЧАК

На основу резултата физичко-хемијских анализа, квалитет воде акумулације није на задовољавајућем нивоу. Забиљежена је повећана концентрација тешких метала (олова, гвожђа и мангана), алуминијума, амонијака, нитрита и нитрата као и повећане вриједности за НРК-перманганатну оксидацију.

Будући да је у акумулацији забиљежено присуство пестицида, пожељно је успоставити редован мониторинг пестицида. Важно је напоменути да се пажња треба усмерити и у правцу анализе седимента на тешке метале. Такође, у акумулационом језеру Дренова присутно је и бактериолошко загађење.

Претходна истраживања указала су на проблем засипања акумулације великим количином наноса, што има директан утицај на животну средину и економију, с обзиром на вишеструку улогу ове акумулације и све веће потребе за водом. У циљу рјешавања наведеног проблема потребно је интегрално уређење цијелог слива акумулације Дренова, што подразумијева низ антиерозионих мјера и одрживо управљање земљиштем.

С обзиром на то да се вода из језера Дренова користи за водоснабдијевање, потребно је око акумулације успоставити зоне санитарне заштите и увести заштитне мјере, у циљу заштите воде од свих видова загађења и штетних утицаја који могу неповољно дјеловати на хигијенску исправност воде за пиће или на издашност изворишта.

Воду из језера Дренова могуће је пречистити да се може користити као вода за пиће, али након обимног третмана.

ЛИТЕРАТУРА

2. Градски завод за јавно здравље, Центар за хигијену и хуману екологију, Лабораторија за хуману екологију и екотоксикологију, Извјештај о испитивању, Београд, 2015.
3. Далмација, Б., Бечелић-Томин, М., Далмација, М., Тричковић, Ј., Агбаба, Ј., Рончевић, С., Малетић, С., Крчмар, Д., Леовац, А., Керкез, Ђ., Угарчина-Перовић,
С., Томашевић, Д.: Параметри квалитета воде и седимента и тумачење стандарда (имисиони стандарди). Природно-математички факултет, Департман за хемију, биохемију и заштиту животне средине, Нови Сад, 2012.
5. Завод за јавно здравље Суботица, Центар за хигијену и хуману екологију, Извјештај, 2013.
7. Правилник о здравственој исправности воде за пиће („Службени гласник Републике Српске“, број 75/15), 2015.
8. Правилник о хигијенској исправности воде за пиће („Службени гласник Републике Српске“, број 40/03), 2003.
11. Уредба о класификацији вода и категоризацији водотока („Службени гласник Републике Српске“, број 42/01), 2001.

MOŘFOMETRIJA ДИГЕСТИВНОГ ТРАКТА НЕКИХ ЦИПРИНИДНИХ ВРСТА РИБА ИЗ РИЈЕКЕ САВЕ

Драгојла Голуб, Горан Шукало, Мага Ранитовић
Универзитет у Бањој Луци, Природно-математички факултет, Младена Стојановића 2, 78000 Бања Лука, Република Српска, БиХ

Abstract

GOLUB Dragojla, G. ŠUKALO, Maja RANITOVIĆ: DIGESTIVE TRACT MORPHOMETRICS OF SOME CYPRINID FISHES FROM RIVER SAVA [University of Banja Luka, Faculty of Natural Sciences and Mathematics, Mladen Stojanovića 2, 78000 Banja Luka, Republic of Srpska, Bosnia and Herzegovina]

This paper presents data about several digestive tract morphometric for three omnivore cyprinid fish species, Prussian carp (Carassius gibelio), Chub (Squalius cephalus) and Cactus roach (Rutilus virgo) from river Sava in order to bring the obtained information in relationship with the type of food that fishes use. Standard body length, body weight and digestive tract length and weight were measured. The maximum value for digestive tract length in comparison to the standard length of the body was determinate for Prussian carp (483,61%) which indicate that herbal component has a significant role in its diet. Much lower values were observed for Chub and Cactus roach (157,41% and 151,11%) which indicates higher share of animal food in their diet. All analyzed fish species showed a high positive correlation between the standard body length and the absolute length of the digestive tract, as well as between body mass and weight of the digestive tract.

Key words: cyprinid fishes, digestive tract morphometrics

Сажетак

У раду се дају подаци о неким морфометријским особинама дигестивног тракта код три омниворне ципринидне врсте риба, бабушке (Carassius gibelio), клена (Squalius cephalus) и плотице (Rutilus virgo) из ријеке Саве, како би се добијени подаци довели у везу са врстом хране коју ове рибе користе. Јединкама је измјерена стандардна дужина тијела, маса тијела, дужина дигестивног тракта и маса дигестивног тракта. Код бабушке су утврђене највеће вриједности дужине дигестивног тракта у односу на стандардну дужину тијела (483,61%) што говори у прилог томе да биљна компонента има значајну улогу у њеној исхранни. Код клена и плотице уочене су доста ниже вриједности (157,41%, односно 151,11%) што упућује на веће учешће анималне хране у њиховој исхрани. Код све три анализираних врста риба утврђена је висока позитивна корелација између стандардне дужине тијела и дужине дигестивног тракта, као и између масе тијела и масе дигестивног тракта.

Кључне ријечи: ципринидне врсте риба, морфометрија дигестивног тракта
УВОД

Обрнуто пропорционалан однос између дужине дигестивног тракта и трофичког нивоа врсте добро је изучен код представника свих класа кичменјака. Такав однос објашњава се чињеницом да је примарним конзументима потребно више времена за варење хране због њене мање нутритивне вриједности као и веће отпорности биљних у односу на животињска ткива када се ради о процесу варења (Horn, 1989, по Wagner и сар., 2009). Дужина цријева често се поређује са дужином тијела рибе, а највише зависи од хране којом се риба храни. Рибе хербивори имају најдуже цријеве која може до 15 пута дужине тијела, омнивори кратчени, које је сигмидално сложене цријеве средње дужине, а карниворе најкраће цријеве које је обично прати (Bogut и сар., 2006).

Циљ овог рада био је да се дају компаративни подаци о морфометријским карактеристикама (дужини и маси) дигестивног тракта код три омниворне ципринидне врсте риба из ријеке Саве – бабушике (Carassius gibelio), клена (Squalius cephalus) и плотице (Rutilus virgo) који би указивали прије свега на екологију њихове исхране.
МАТЕРИЈАЛ И МЕТОДЕ

Јединке бабушке (Carassius gibelio), клена (Squalius cephalus) и плотице (Rutilus virgo) на којима су вршена анализе карактеристика дигестивног тракта обезбијеђене су од стране спортских риболоваца из ријеке Саве код Брођа током љетног периода 2013. године. Морфометријске анализе рађене су у лабораторији Природно-математичког факултета у Бањој Луци где су измјерени слиједећи карактери:

- стандардна дужина тијела (mm),
- маса тијела (g),
- маса очишћеног дигестивног тракта (g),
- дужина очишћеног дигестивног тракта (mm).

За потребе мјерења стандардне дужине тијела као и мјерење дужине дигестивног тракта кориштен је ихтиометар прецизности 1 mm. Мјерење масе тијела и масе дигестивног тракта вршено је помоћу техничких вага различите прецизности (1 g и 0,01 g). Дисекованим јединкама извојен је дигестивни тракт, од ждрјела до аналног отвора (Mikavica and Dizdarević, 1990) који је прво очишћен, а након тога је установљена његова дужина и маса. Добијени подаци обрађени су у програму Excel 2007, а за сваки испитивани параметар дате су средње вриједности, стандардна девијација, те максималне и минималне вриједности.

РЕЗУЛТАТИ И ДИСКУСИЈА

Истраживања одређених морфометријских карактеристика дигестивног тракта обухватали су 12 јединки бабушке и по 11 јединки клена и плотице.

Карактеристике дигестивног тракта бабушке

Из Табеле 1 може се уочити да је средња вриједност стандардне дужине тијела бабушки износила 135,75 mm, док је средња вриједност масе тијела била 97 g. Просјечна вриједност укупне дужине дигестивног тракта износила је 656,50 mm, односно 483,61% у односу на стандардну дужину тијела (однос између дужине дигестивног тракта и стандардне дужине тијела био је приближно 4,8:1). Средња вриједност за масу дигестивног тракта износила је 0,67 g, односно 0,69% у односу на масу тијела.

Табела 1. Морфометрија дигестивног тракта бабушке (Carassius gibelio)

<table>
<thead>
<tr>
<th></th>
<th>Стандардна дужина тијела (mm)</th>
<th>Маса тијела (g)</th>
<th>Маса дигестивног тракта (g)</th>
<th>Маса дигестивног тракта (%)</th>
<th>Дужина дигестивног тракта (mm)</th>
<th>Дужина дигестивног тракта (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>МИН</td>
<td>97,00</td>
<td>26,00</td>
<td>0,16</td>
<td>0,62</td>
<td>482,00</td>
<td>496,91</td>
</tr>
<tr>
<td>МАКС</td>
<td>210,00</td>
<td>345,00</td>
<td>3,18</td>
<td>0,92</td>
<td>1056,00</td>
<td>502,86</td>
</tr>
<tr>
<td>СВ</td>
<td>135,75</td>
<td>97,00</td>
<td>0,67</td>
<td>0,69</td>
<td>656,50</td>
<td>483,61</td>
</tr>
<tr>
<td>СД</td>
<td>30,52</td>
<td>83,91</td>
<td>0,88</td>
<td></td>
<td>158,01</td>
<td></td>
</tr>
</tbody>
</table>
Морфолошке и биохемијске студије проведене на неколико ципринидних врста риба, између осталог и на бабушки говоре да се дужина дигестивног тракта и стандардна дужина тијела налазе у односу од око 3:1 (Ciornea и саr., 2010). При томе, просјечна вриједност стандардне дужине тијела бабушки била је 188 mm, а дигестивног тракта 604 mm. Средња вриједност масе тијела анализираних јединки била је 197,6 g, док је маса дигестивног тракта у просјеку износила 2,9 g. Исти аутори наводе и да je примијенена значајна позитивна корелација између масе тијела и масе дигестивног тракта (75,64%), док је корелација између стандардне дужине тијела и дужине дигестивног тракта износила 69,88%. Поредећи ове податке са онима из наших истраживања, устанољено je да су код јединки из нашем узорка примијене веће вриједности кадa се ради o дужинама дигестивног тракта, што се може објаснити вјероватно већом орјењисаносту бабушки из ријеке Саве на биљну компоненту у исхрани. Вриједности средиње дужине тијела, масе тијела и масе дигестивног тракта веће су код бабушки из рада Ciornea и саr. (2010) него код оних из нашем истраживања, пошто су се у њиховом узорку нашле веће рибе. И нека друга истраживања, као она проведена на исхранi Carassius gibelio у Турској говоре да биљна компонента има велику улогу у њеној исхрани, при чему значајан удно имају филаментозне алге али и макроинвертебрати, детритус и сестон (Ozdilek и Jones, 2014). Бабушке из нашем узорка имале су уједначене вриједности дужине дигестивног тракта без обзира на дужину тијела рибе што се повезује са сталношћу у избору хране коју користе.

На Сликама 1 и 2 уочава се да је степен корелације између масе и дужине дигестивног тракта те масе и стандардне дужине тијела бабушки из нашем узорка још израженији па је за стандардну дужину тијела и дужину дигестивног тракта износио 92,17%, док је за масу тијела и масу дигестивног тракта износио 91,08%.

![Слика 1](image1.png) ![Слика 2](image2.png)

Слика 1. Однос стандардне дужине тијела и дужине дигестивног тракта код бабушки

Слика 2. Однос масе тијела и масе дигестивног тракта код бабушки

Карактеристике дигестивног тракта клена

Средња вриједност стандардне дужине тијела код клена износила је 217,40 mm, средња вриједност масе тијела износила је 268,36 g, док је средња вриједност масе дигестивног тракта била 5,61 g или 2,09% у односу на укупну масу тијела. Што се тиче дужине дигестивнога тракта, средиња вриједност износила је 342,20 mm при чему је процентуално учење у односу на стандардну дужину тијела износило 157,41% (Табела 2). Однос између дужине дигестивног тракта клена и стандардне дужине тијела био је око 1,6:1.
Резултати Vukovića (1968) указују да нису утврђене веће разлике у релативној дужини цријевног тракта међу кленовима испитиваних водотока (три притока ријеке Босне). Такође, установљено је да клен из горњег тока ријеке Босне припада групи зоофитофа у којима учешће биљних компонената у исхрани није нарочито велико; релативна дужина цријевног тракта износила је 108,77% за кленове из Мокрањске Миљацке, 116,20% за оне из Љубине и 115,85% за јединке из водотока Зујевина (средња вриједност за све испитиване локалитете износила је 113,61%). Истраживања проведена од стране Vuković и Vuković (1968) на цријевном тракту клена из водотока Сутурлија говоре да са повећањем дужине тијела долази до повећавања релативне дужине цријевног тракта што се објашњава променама у саставу/избору хране до којих долази са повећањем димензија тијела риба. Исти автори наводе да повећавање релативне дужине цријевног тракта траје док рибе не достигну дужину од 100 mm. При томе, средња вриједност релативне дужине цријевног тракта код кленова из Сутурлије износила је 114,74%. У прилог овим подацима говоре и истраживања Mapp-a (1976) који се бавио узрастом структуром, растом, репродукцијом и исхраном клена из ријеке Стуор (јужна Енглеска) и установио да се млади кленови углавном хране ларвама инсекта и раччилима, док се старије индивидуи више оријентишу на рибе и маркофитску вегетацију. Подаци до којих је дошла Piria (2007) говоре да је средња вриједност релативне дужине цријевног тракта клена из водотока Стоговица биле око 127% од стандардне дужине тијела (јединке клена у просјеку су биле мање од наших, а средња вриједност стандардне дужине тијела износила је око 100 mm). Поредећи наше резултате са пријашњим истраживањима, установљено је да су кленови из наших истраживања имали веће како апсолутне (342,2 mm) тако и релативне вриједности за дужину цријевног тракта (157,41% од стандардне дужине тијела), што се може објаснити већим димензијама анализираних риба (средња вриједност стандардне дужине тијела износила је 217,40 mm). С друге стране, запажено је да је релативна дужина цријевног тракта већа код мањих јединки клена што се поклапа са подацима из литературе који кажу да је код кленова у већим узрастним категоријама доминантнија животињска компонента у исхрани.

Анализиран је и степен корелације између стандардне дужине тијела и дужине цријевног тракта (Слика 3) који је био веома висок и износио 94,92%, те између укупне масе тијела и масе цријевног тракта (Слика 4) који је био нешто нижи (73,24%).
Карактеристике дигестивног тракта плотице

Измерене вриједности код плотице указују да је средња вриједност стандардне дужине тијела била 238,90 mm, а средња вриједност укупне масе тијела 327,73 g. При томе, просјечна вриједност масе дигестивног тракта износила је 2,84 g, а средња вриједност проценатног учешћа масе дигестивног тракта у односу на масу тијела износила је 0,87%. Што се тиче дужине дигестивног тракта, средња вриједност износила је 361,00 mm, док је просјечна вриједност процентуалног учешћа дужине дигестивног тракта у односу на стандардну дужину тијела износила 151,11% (Табела 3). Однос између дужине дигестивног тракта и стандардне дужине тијела износио је око 1,5:1.

Табела 3. Морфометрија дигестивног тракта плотице (Rutilus virgo)

<table>
<thead>
<tr>
<th>МИН</th>
<th>Стандардна дужина тијела (mm)</th>
<th>Маса тијела (g)</th>
<th>Маса дигестивног тракта (g)</th>
<th>Маса дигестивног тракта (%)</th>
<th>Дужина дигестивног тракта (mm)</th>
<th>Дужина дигестивног тракта (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>МИН</td>
<td>191</td>
<td>180</td>
<td>1,38</td>
<td>0,77</td>
<td>231</td>
<td>120,94</td>
</tr>
<tr>
<td>МАКС</td>
<td>288</td>
<td>541</td>
<td>6,11</td>
<td>1,13</td>
<td>558</td>
<td>193,75</td>
</tr>
<tr>
<td>СВ</td>
<td>238,9</td>
<td>327,73</td>
<td>2,84</td>
<td>0,87</td>
<td>361</td>
<td>151,11</td>
</tr>
<tr>
<td>СД</td>
<td>33,40</td>
<td>145,18</td>
<td>1,68</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Piria (2007) говори да је цријево код плотице релативно дугачко и да износи око 147% у односу на стандардну дужину тијела што се поклапа са нашим резултатима гдје је просјечна вриједност дужине дигестивног тракта била 149,37% с тим што су јединке плотице из поменутих истраживања у просјеку биле мање од наших (средња вриједност стандардне дужине тијела је била 110,06 mm у односу на 238,9 mm код плотице из наше узора). Приближно једнаке вриједности дужине дигестивног тракта повезују се са сталношћу у врсти хране коју плотица користи без обзира на дужинске класе, односно узраст. Што се тиче избора хране, Šenk и Aganović (1968) наводе да се плотице из ријеке Врбње углавном хране гастроподама и ларвама хирономида, али да су чести били и налази остатака алги и маховина што ову рибу сврстава у групу оминивора које су више оријентисане на анималну храну. Степен корелисаности између дужине тијела и дужине...
морфометрија дигестивног тракта неких ципринидних врста риба из ријеке Саве

диегестивног тракта код плотице био је нижи него код друге двије испитиване врсте (67,38%) (Слика 5), док је корелација између масе тијела и масе дигестивне цијеви била пуно израженија и износила је 82,92% (Слика 6).

ЗАКЉУЧИЦИ

На основу анализе морфометрије дигестивног тракта код три ципринидне врсте риба (бабушка, клен и плотица) из ријеке Саве установљено је да је однос дужине дигестивног тракта бабушке у односу на стандардну дужину тијела износио 4,8:1, код клена 1,6:1 и код плотице 1,5:1. Дигестивни тракт бабушке примјетно је дужи у односу на дигестивни тракт клена и плотице, што указује на чињеницу да биљна компоненета има пуно веће учешће у њеној исхрани. Код бабушке и плотице вриједности дужине дигестивног тракта прилично су уједначене без обзира на дужину тијела рибе, што указује на сталност у врсти храни коју користи. Код клена су примијећене ниже вриједности дужине дигестивног тракта код дужих индивидуа што указује на већу оријентисаност ка анималној компоненти у исхрани код старијих јединки клена. Код свих анализираних врста риба уочена је висока или изразито висока позитивна корелација између стандардне дужине тијела и дужине дигестивног тракта, као и између масе тијела и масе дигестивног тракта.

ЛИТЕРАТУРА

11. Ozdilek Sukran Yalcın, Roger I. Jones: The Diet Composition and Trophic Position of Introduced Prussian Carp Carassius gibelio (Bloch, 1782) and Native Fish Species in a Turkish River. Turkish Journal of Fisheries and Aquatic Sciences 14: 769–776, 2014.

Примљено: 02.03.2017.
ПРИЛОГ ПОЗНАВАЊУ ФЛОРЕ КЛИСУРЕ ЦРНЕ РИЈЕКЕ (РЕПУБЛИКА СРПСКА)

Биљана Лубарда, Синиша Шкондрић, Бојана Ћук

Природно-математички факултет, Универзитет у Бањој Луци, Младена Стојановића 2, 78000 Бања Лука, Република Српска, БиХ

Abstract

LUBARDA, Biljana, S. ŠKONDRIĆ, Bojana ĆUK: CONTRIBUTION TO THE FLORA OF THE CRNA RIJEKA GORGE (REPUBLIC OF SRPSKA) [Faculty of Natural Sciences and Mathematics, University of Banja Luka, Mladena Stojanovića 2, 78000 Banja Luka, Republic of Srpska, Bosnia and Herzegovina]

Field researches of Crna rijeka gorge (Vrbas left tributary, Republic of Srpska) was carried out in vegetation season 2013. A total number of 134 taxa were found in investigated area. The most nummrous in plant species and subspecies were families: Compositae (17.2%), followed by Labiatae and Leguminosae (7.5%). In the biological spectrum of the flora of Crna rijeka gorge, the most frequent were the following life forms: hemicriptophytes (47%), phanerophytes (12.7%) and therophytes / chamaephytes (11.2%). Phytogeographical analysis showd that Sub-Mediterranean (14.6%), Eurasian (13%), Sub-Central European (12.2%) and Sub-Eurasian (11.4%) were the most nummrous floral elements. Adventive plants were represented with 8 taxa. In investigated area 6 plant endemic taxa were noticed: Acer hyrcanum subsp. intermedium, Erysimum linariifolium, Moehringia bavarica subsp. bavarica, Onosma stellulata, Pseudofumaria alba subsp. leiosperma and Symphyandra hofmannii.

Key words: Crna rijeka, flora, endemics

УВОД

Слив ријеке Врбас одликује изузетна геоморфолошка, хидролошка, биолошка, односно еколошка разноврсност. Иако цијели ток обилује природним вриједностима, ипак је могуће извођити еколошке цјелине са обилежјима рефугијалних станишта. Једно такво рефугујално станиште јесте клисура Црне ријеке, лијева притока Врбаса.
станишту заступљене су многе релiktне и ендемичне врсте биљака, које су успјеле преживјети и драстичне промјене климе у току посљедњег глацијала.
Поред тога што се кањон ријеке Врбас и њених притока карактерише изузетним богатством различитих форми хидролошких, геолошких и биолошких феномена до данас не постоје свообухватна истраживања флоре и вегетације овог подручја. Подручје истраживања – клисура Црне ријеке, посебно је интересантно, управо због специфичног положаја на Балканском полуостру, близине јужних обода Панонске низије и значајног утицаја мединерпанске климе (Horvatić, 1967).
Прва ријека врло је значајан водоток подручја општине Мркоњић Град. Она истиче из Малог језера које се налазе на излетишту Балкана и тече у правцу југ – сјевер. На свом путу протиче кроз Мркоњић Град, а након тока од укупно 17 km, улијева се у ријеку Врбас код мјеста Дабрац као лијева притока. Ово подручје карактерише умјерено континентална клима, али се дјелимично осјећа и утицај измјињене медитеранске климе.

МАТЕРИЈАЛ И МЕТОДЕ

РЕЗУЛТАТИ И ДИСКУСИЈА

Теренским истраживањима клисура Црне ријеке забиљежено је присуство укупно 134 врсте и подврсте васкуларних биљака (Табела 1).

Табела 1. Списак таксона васкуларне флоре клисура Црне ријеке

<table>
<thead>
<tr>
<th>Таксон</th>
<th>животна форма</th>
<th>флорни елемент</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTERIDOPHYTA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspleniaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asplenium ruta-muraria L.</td>
<td>H</td>
<td>Циркумполарни</td>
</tr>
<tr>
<td>Asplenium trichomanes L.</td>
<td>H</td>
<td>Космополитски</td>
</tr>
<tr>
<td>SPERMATOPHYTA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANGIOSPERMAE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DICOTYLEDONES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aceraceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acer campestre L.</td>
<td>P</td>
<td>Субсредњеевропски</td>
</tr>
<tr>
<td>Acer hyrcanum Fischer & C. A. Meyer subsp.</td>
<td>P</td>
<td>Илирско-балкански</td>
</tr>
</tbody>
</table>
Anacardiaceae

* intermedium* (Pančić) Bornm.
* Acer monspessulanum* L.
* Acer negundo* L.
* Acer obtusatum* Waldst. & Kit. ex Willd.

Araliaceae

* Cotinus coggyria* Scop.

Betulaceae

* Acer negundo* L.
* Alnus glutinosa* (L.) Gaertn.

Boraginaceae

* Onosma stellulata* Waldst. & Kit.

Campanulaceae

* Campanula patula* L.
* Campanula persicifolia* L.
* Campanula sibirica* agg.
* Campanula trachelium* L.
* Symphyandra hofmannii* Pant.

Cannabaceae

* Humulus lupulus* L.

Caryophyllaceae

* Dianthus sylvestris* Wulfen
* Moehringia bavarica* (L.) Gren. subsp. bavarica
* Petrorhagia saxifraga* (L.) Link
* Saponaria officinalis* L.
* Silene italica* (L.) Pers. subsp. nemoralis (Waldst. & Kit.) Nyman
* Silene vulgaris* (Moench) Garcke

Chenopodiaceae

* Chenopodium album* L.

Compositae

* Achillea millefolium* L.
* Ambrosia artemisiifolia* L.
* Anthemis arvensis* L.
* Artemisia alba* Turra
* Artemisia vulgaris* L.
* Centaurea jacea* L.
* Centaurea triumfettii* All.
* Cichorium intybus* L.
* Conyza canadensis* (L.) Cronquist
* Erigeron annuus* (L.) Desf.
* Eupatorium cannabinum* L.
* Hieracium virosum* Pall.
* Inula britannica* L.
* Inula germanica* L.
* Jurinea mollis* (L.) Rchb.
* Lactuca perennis* L.
* Lactuca serriola* L.

Sonchus arvensis* L.

Sonchus arvensis* L.

Leontodon crispus* DC. ex Nyman

Solidago virgaurea* L.

Sonchus arvensis* L.
<table>
<thead>
<tr>
<th>Botanical Family</th>
<th>Scientific Name</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sonchus asper (L.) Hill</td>
<td>TH</td>
<td>Субевроазијски</td>
</tr>
<tr>
<td>Tanacetum corymbosum (L.) Sch. Bip.</td>
<td>H</td>
<td>Субпонтско-субмедитерански</td>
</tr>
<tr>
<td>Tussilago farfara L.</td>
<td>G</td>
<td>Субевроазијски</td>
</tr>
<tr>
<td>Convolvulaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calystegia sepium (L.) R. Br.</td>
<td>G</td>
<td>Евроазијски</td>
</tr>
<tr>
<td>Convolvulus cantabrica L.</td>
<td>ZC</td>
<td>Понтско-субмедитерански</td>
</tr>
<tr>
<td>Corylaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ostrya carpinifolia Scop.</td>
<td>P</td>
<td>Субмедитерански</td>
</tr>
<tr>
<td>Corylus avellana L.</td>
<td>P</td>
<td>Субсредњевропски</td>
</tr>
<tr>
<td>Carpinus betulus L.</td>
<td>P</td>
<td>Средњевропски</td>
</tr>
<tr>
<td>Carpinus orientalis Mill.</td>
<td>P</td>
<td>Источно-субмедитерански</td>
</tr>
<tr>
<td>Crassulaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sedum urvillei DC.</td>
<td>ZC</td>
<td>Субмезијско-субпанонски</td>
</tr>
<tr>
<td>Sedum hispanicum L.</td>
<td>ZC</td>
<td>Источно-субмедитерански</td>
</tr>
<tr>
<td>Cruciferae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alyssum montanum L.</td>
<td>ZC</td>
<td>Субпонтско-субмедитерански</td>
</tr>
<tr>
<td>Arabis collina Ten.</td>
<td>H</td>
<td>Субмедитерански</td>
</tr>
<tr>
<td>Erysimum hieracifolium L.</td>
<td>TH</td>
<td>Средњевропски</td>
</tr>
<tr>
<td>Erysimum linariifolium Tausch</td>
<td>ZC</td>
<td>Динарско-бalkански</td>
</tr>
<tr>
<td>Peltaria alliacea Jacq.</td>
<td>H</td>
<td>Субилирско-субпанонски</td>
</tr>
<tr>
<td>Euphorbiaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Euphorbia carniolica Jacq.</td>
<td>H</td>
<td>Субилирски</td>
</tr>
<tr>
<td>Euphorbia cyparissias L.</td>
<td>H</td>
<td>Евроазијски</td>
</tr>
<tr>
<td>Euphorbia myrsinites L.</td>
<td>ZC</td>
<td>Субмедитерански</td>
</tr>
<tr>
<td>Euphorbia platyphyllos L.</td>
<td>T</td>
<td>Субмедитерански</td>
</tr>
<tr>
<td>Fagaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quercus cerris L.</td>
<td>P</td>
<td>Источно-субмедитерански</td>
</tr>
<tr>
<td>Geraniaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geranium dissectum L.</td>
<td>T</td>
<td>Евроазијски</td>
</tr>
<tr>
<td>Geranium phaeum L.</td>
<td>H</td>
<td>Средњевропски</td>
</tr>
<tr>
<td>Geranium robertianum L.</td>
<td>TH</td>
<td>Субалпанско-субмедитерански</td>
</tr>
<tr>
<td>Geranium lucidum All.</td>
<td>TH</td>
<td>Субалпанско-субмедитерански</td>
</tr>
<tr>
<td>Guttiferae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypericum perforatum L.</td>
<td>H</td>
<td>Субевроазијски</td>
</tr>
<tr>
<td>Labiatae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micromeria thymifolia (Scop.) Fritsch</td>
<td>ZC</td>
<td>Илирски</td>
</tr>
<tr>
<td>Nepeta cataria L.</td>
<td>H</td>
<td>Понтско-централноазијски</td>
</tr>
<tr>
<td>Origanum vulgare L.</td>
<td>G</td>
<td>Евроазијски</td>
</tr>
<tr>
<td>Prunella vulgaris L.</td>
<td>H</td>
<td>Субалпанско-субмедитерански</td>
</tr>
<tr>
<td>Salvia verticillata L.</td>
<td>H</td>
<td>Субпанонски</td>
</tr>
<tr>
<td>Scutellaria altissima L.</td>
<td>G</td>
<td>Понтски</td>
</tr>
<tr>
<td>Stachys recta L.</td>
<td>H</td>
<td>Субпонтски</td>
</tr>
<tr>
<td>Teucrium chamaedrys L.</td>
<td>DC</td>
<td>Субпанонско-субмедитерански</td>
</tr>
<tr>
<td>Teucrium montanum L.</td>
<td>DC</td>
<td>Субмедитерански</td>
</tr>
<tr>
<td>Thymus serpyllum L.</td>
<td>ZC</td>
<td>Средњевропски</td>
</tr>
<tr>
<td>Leguminosae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chamaecytisus hirsutus (L.) Link</td>
<td>NP</td>
<td>Источно-субмедитерански</td>
</tr>
<tr>
<td>Colutea arborescens L.</td>
<td>NP</td>
<td>Субмедитерански</td>
</tr>
<tr>
<td>Coronilla varia L.</td>
<td>H</td>
<td>Субпонтски</td>
</tr>
<tr>
<td>Dorycnium pentaphyllum Scop. subsp. herbaceum (Vill.) Rouy</td>
<td>DC</td>
<td>Источно-субмедитерански</td>
</tr>
<tr>
<td>Lotus corniculatus L.</td>
<td>H</td>
<td>Субевроазијски</td>
</tr>
<tr>
<td>Family</td>
<td>Genus and Species</td>
<td>Type</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>---------------</td>
</tr>
<tr>
<td>Fabaceae</td>
<td>Medicago lupulina L.</td>
<td>TH</td>
</tr>
<tr>
<td></td>
<td>Medicago sativa L.</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>Melilotus officinalis (L.) Lam.</td>
<td>TH</td>
</tr>
<tr>
<td></td>
<td>Robinia pseudoacacia L.</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Trifolium pratense L.</td>
<td>H</td>
</tr>
<tr>
<td>Oleaceae</td>
<td>Fraxinus ornus L.</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Ligustrum vulgare L.</td>
<td>NP</td>
</tr>
<tr>
<td>Papaveraceae</td>
<td>Chelidonium majus L.</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>Papaver rhoeas L.</td>
<td>TH</td>
</tr>
<tr>
<td></td>
<td>Pseudofumaria alba (Mill.) Lidén subsp. leiosperma (P.Conrath) Lidén</td>
<td>H</td>
</tr>
<tr>
<td>Plantaginaceae</td>
<td>Plantago lanceolata L.</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>Plantago major L.</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>Plantago media L.</td>
<td>H</td>
</tr>
<tr>
<td>Polygonaceae</td>
<td>Reynoutria japonica Houtt.</td>
<td>G</td>
</tr>
<tr>
<td>Primulaceae</td>
<td>Lysimachia punctata L.</td>
<td>H</td>
</tr>
<tr>
<td>Ranunculaceae</td>
<td>Clematis vitalba L.</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Helleborus odorus Waldst. & Kit.</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>Hepatica nobilis Schreb.</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>Thalictrum minus L.</td>
<td>H</td>
</tr>
<tr>
<td>Rhamnaceae</td>
<td>Frangula rupestris (Scop.) Schur</td>
<td>NP</td>
</tr>
<tr>
<td></td>
<td>Rhamnus catharticus L.</td>
<td>NP</td>
</tr>
<tr>
<td>Rosaceae</td>
<td>Crataegus monogyna Jacq.</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>Fragaria moschata Weston</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>Potentilla argentea L.</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>Potentilla micrantha Ramond ex DC.</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>Sanguisorba minor Scop.</td>
<td>H</td>
</tr>
<tr>
<td>Rubiaceae</td>
<td>Galium album Mill.</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>Galium mollugo L.</td>
<td>H</td>
</tr>
<tr>
<td>Rutaceae</td>
<td>Dictamnus albus L.</td>
<td>NP</td>
</tr>
<tr>
<td>Salicaceae</td>
<td>Populus alba L.</td>
<td>P</td>
</tr>
<tr>
<td>Saxifragaceae</td>
<td>Saxifraga rotundifolia L.</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>Saxifraga tridactylites L.</td>
<td>T</td>
</tr>
<tr>
<td>Scrophulariaceae</td>
<td>Digitalis grandiflora Mill.</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>Digitalis laevigata Waldst. & Kit.</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>Linaria vulgaris Mill.</td>
<td>H</td>
</tr>
<tr>
<td>Umbelliferae</td>
<td>Bupleurum praetaltum L.</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>Daucus carota L.</td>
<td>TH</td>
</tr>
</tbody>
</table>
Биљана Лубарда, Синиша Шкондрић, Бојана Ћук

Orlaya grandiflora (L.) Hoffm.
Smyrnium perfoliatum L.

Valerianaceae
Valeriana officinalis L.

Vitaceae
Parthenocissus quinquefolia (L.) Planchon

MONOCOTYLEDONES

Dioscoreaceae
Tamus communis L.

Gramineae
Achnatherum calamagrostis (L.) Beauv.
Cynodon dactylon (L.) Pers.
Melica ciliata L.
Setaria viridis (L.) P. Beauv.

Liliaceae
Allium flavum L.
Polygonatum odoratum (Mill.) Druce
Veratrum nigrum L.

Слика 1. Најбројније фамилије (врсте и подврсте) у флори клисуре Црне ријеке
Анализом заступљености појединих животних форми флоре клисуре Црне ријеке утврђена је процентуална доминација хемикриптофита са 63 представника или 47% у односу на укупан број таксона (Тabela 2).

Приближно једнаким, али далеко мањим учешћем заступљене су животне форме фанерофита (12,7%) и терофита / хамефита (11,2%). Остали животне форме заступљене су у мањем проценту. Процентуална доминација животних форми хемикриптофита и терофита / хамефита, указује у великој мјери на специфичност еколошких типова станишта и пионирски карактер заједница које се развијају у клисуре Црне ријеке. Фанерофите и нананафанерофите су у флори клисуре Црне ријеке заступљене са 12,7%, односно 4,5% респективно. Велико присуство дрвенастих врста на овом подручју указује на полидоминантну структуру и релiktност биљних заједница.

Таблица 2. Биолошки спектар флоре клисуре Црне ријеке

<table>
<thead>
<tr>
<th>животна форма</th>
<th>број таксона</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Хемикриптофите (H)</td>
<td>63</td>
<td>47,0</td>
</tr>
<tr>
<td>Фанерофите (P)</td>
<td>17</td>
<td>12,7</td>
</tr>
<tr>
<td>Терофите / хамефите (TH)</td>
<td>15</td>
<td>11,2</td>
</tr>
<tr>
<td>Геофите (G)</td>
<td>10</td>
<td>7,5</td>
</tr>
<tr>
<td>Зељасте хамефите (ZC)</td>
<td>10</td>
<td>7,5</td>
</tr>
<tr>
<td>Терофите (T)</td>
<td>9</td>
<td>6,7</td>
</tr>
<tr>
<td>Нанофанерофите (NP)</td>
<td>6</td>
<td>4,5</td>
</tr>
<tr>
<td>Дрвенасте хамефите (DC)</td>
<td>3</td>
<td>2,2</td>
</tr>
<tr>
<td>Фанерофитске лијане (PL)</td>
<td>1</td>
<td>0,7</td>
</tr>
<tr>
<td>укупно</td>
<td>134</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Биљногеографска анализа флоре клисуре Црне ријеке указује да су са највећим процентом заступљене врсте широког распрострањења и то: субмедитерански флорни елемент са 18 таксона или 14,3%, јевроазијски и субсредњеевропски са по 16 таксона или 12,7% и субевроазијски са 14 таксона или 11,1%. Остали флорни елементи заступљени су са мањим бројем представника (Слика 2). Значајан процент анализиране флоре припада субмедитеранском флорном елементу. Високо учешће овог флорног елемента објашњава се чињеницом да медитеранска клима, истином ослабљеним утицајем, допире до предјела дубоко у копну, дуж кањона и клисура наших ријека. У флори клисуре Црне ријеке заступљено је осам таксона који припадају адвентивим биљкама. Анализирајући квализативно учешће алохотних врста у флори истраживаног подручја забиљежено је највеће присуство сљедећих таксона: Reynoutria japonica, Ambrosia artemisiifolia и Conyza canadensis.

Балканско полуострво карактерише се присуством клисуре и кањона који су препознати као рефугиум терцијарне флоре и релiktне вегетације (Мишић, 1984). На рефугијално-релiktни карактер клисуре Црне ријеке осим присуства полидоминантних заједница указују и ендемички таксони чија су станишта пукотине стијена и сипари. Тако је досадашњим флористичким и еколошким истраживањима клисуре Црне ријеке констатовано шест ендемичних таксона, а то су: Acer hyrcanum subsp. intermedium, Erysimum linariifolium, Moehringia bavarica subsp. bavarica, Onosma stellulata, Pseudofumaria alba subsp. leiosperma и Symphyandra hofmannii.

На стијенама Хум планине код Јајца је *Pseudofumaria alba* subsp. *leiosperma* (P. Conrath) Lidén, коју је ботаничар Conrath (1888) описао као *Corydalis leiosperma*. Станиште ове биљке су кречњачки сипари, али се често налази међу каменим блоковима букових и буково-јелових шума. Широко је распрострањена у западном дијелу Балканског полуострва.

ЗАКЉУЧАК

Теренским истраживањем клисуре Црне ријеке, од мјеста Бјелајце до Дабраца, констатовано је присуство 134 врсте и подврсте васкуларних биљака. Међу најзаступљенијим фамилијама посебно се истичу Compositae (17,2% или 23 таксона), Labiatae и Leguminosae (7,5% ili 10 таксона). У биолошком спектру флоре клисуре Црне ријеке утврђена је процентуална доминација хемикриптофита (47% или 63 таксона), фанерофита (12,7% или 17 таксона) и терофита / хамефита (11,2% или 15 таксона). Биљногеографска анализа потврдила је доминацију субмедитеранског (14,6% или 18
Прилог познавању флоре клисуре Црне ријеке (Република Српска)

таксона), европрактичког (13% или 16 таксона), субсредњевеоропског (12,2% или 15 таксона) и субевроазијског (11,4% или 14 таксона) флорног елемента. Констатовано је присуство осам таксона који припадају адвертивним биљкама. Посебно се наглашава присуство шест ендемичних таксона Acer hyrcanum subsp. intermedium, Erysimum linariifolium, Moehringia bavarica subsp. bavarica, Onosma stellulata, Pseudofumaria alba subsp. leiosperma и Symphyandra hofmannii, као и потреба заштите клисуре Црне ријеке и мониторинга ендемичних и инвазивних врста.

ЛИТЕРАТУРА

17. Мишић, Л., Р. Лакушић: Livadske biljke. Завод за удžbenike и nastavna sredstva Beograd; Завод за удžbenike i nastavna sredstva Sarajevo, IP »SVJETLOST«, Sarajevo, 1990.
22. Шилић, Č.: Atlas drveća i grmlja. Завод за удžbenike и nastavna sredstva, Beograd; Завод за удžbenike i nastavna sredstva Sarajevo, IP »SVJETLOST«, Sarajevo, 1990a.
23. Шилић, Č.: Šumske zeljaste biljke. Завод за удžbenike i nastavna sredstva, Beograd; Завод за удžbenike i nastavna sredstva Sarajevo, IP »SVJETLOST«, Sarajevo, 1990b.

TEŠIĆ, Ivana, Jasna FRIŠČIĆ, R. DEKIĆ: CHARACTERIZATION OF ROMAN SNAIL (Helix pomatia) HEMOLYMPH FROM DIFFERENT HABITATS [Faculty of Natural Sciences and Mathematics, University of Banja Luka, Mladen Stojanovića 2, 78000 Banja Luka, Republic of Srpska, Bosnia and Herzegovina]

Hemolymph represents main body fluid in snails. Its circulation is generated by rhythmic contractions of the heart and foot musculature (Sembrat, 1981). Hemolymph contains proteins, buffers, respiratory pigments and sustains homeostasis. Proteins, mainly albumins, provide colloid osmotic pressure in hemolymph. Respiratory pigments are also present and they have an important role in gas transport.Glucose content is species specific, but it also varies between individuals of the same species depending on the season and animal activity. Two types of cholinesterases are present in the hemolymph of roman snail Helix pomatia: soluble fraction (FS) which makes up to 90 % of the total enzyme activity, and another membrane-bound fraction soluble in detergents (DS). Hemocytes represent another characteristic of snail hemolymph. They are directly involved in the prevention of hemolymph loss during injury. Aim of this study is the comparison of several physiological parameters of hemolymph collected from snails inhabiting different habitats: mountain Ozren and Bosna riverside in Doboj municipality. These localities are portrayed by diverse abiotic and biotic factors, so our goal was to determine if differences in hemolymph parameters such as protein content, acetylcholinesterase (AChE) activity and hemocyte profile can be observed. Lower protein concentration and AChE activity was measured in hemolymph from snails collected in urban area of Doboj. Protein concentration depends on various external and internal factors which affect organisms, age, reproductive cycle animal activity etc. Observed hypoproteinemia may be the result of protein synthesis inhibition in hepatopancreas by environmental pollutants. AChE inhibition can also be attributed to the presence of anthropogenic pollution in urban area of Doboj. Due to the sensitivity of this enzyme to pesticides, it is commonly used as a reliable bioindicator of soil and water pollution. Although numerous studies have been done in this field, adequate system of classification and nomenclature of gastropod hemocytes has not been established yet. In hemolymph from both experimental groups two types of hemocytes were identified and measured.

Key words: Roman snail, acetylcholinesterase, glucose, hemocytes

Сажетак

Хемолимфа представља главну тјелесну течност пужева, чија је циркулација условљена ритмичким контракцијама срца и мишића стопала (Sembrat, 1981). Хемолимфа садржи протеине, пуферске системе и респираторни пигмент те обезбеђује релативно сталан састав унутрашње средине организма. Протеини обезбеђују колоидно-осмотски притисак. Главну улогу, међу протеинима, у одржавању колоидно-осмотског притиска имају албумини, док је улога глобулина...
изнатно мања. Посебну улогу у хемолимфи имају респираторни пигменти, који врше транспорт гасова. Концентрација глукозе у хемолимфи специфична је за сваку врсту, али је могуће варирање код једне исте јединке у зависности од њене физиолошке активности. Код пужа Helix pomatia откривена су два облика холинестараза: једна потпуно растворљива (FS) у хемолимфи и која чини 90% од укупне активности, и друга мембрански везана која је растворљива у детерџентима (DS). Присуство хемоцита још је једна од карактеристика хемолимфе. Они директно учествују у прехрањивању иестицања хемолимфе из организма на мјесту оштећења. Циљ рада је поређење карактеристика хемолимфе Helix pomatia из различитих станишта. Узорци виноградског пужа сакупљени су са два различита локалитета, од којих је један смјештен на планини Озрен, док се други налази у урбаном подручју Добоја. С обзиром на то да је хемолимфа једна од карактеристика хемолимфе, испитиване групе пужева сакупљених на подручју Добоја може се објасити присуством антропогеног загађења.

Кључне ријечи: Helix pomatia, виноградски пуж, ацетилхолинестераза, хемоцити

УВОД

Хемолимфа представља главну тјелесну течност пужева, чија је циркулација условљена ритмичким контракцијама срца и мишића стопала (Sembrat, 1981). Хемолимфа садржи бјеланчевине, пуферске системе, респираторни пигмент и обезбједује релативно стални састав унутрашње средине организма. Протеини обезбједују колоидно-осмотски притисак. Главну улогу међу протеинима у одржавању колоидно-осмотског притиска имају албумини, док је улога глобулина знатно мања. Концентрација протеина зависи од многих сполаљнихих и унутрашњих фактора који утичу на организам, од старости организма, активности животиње, епидемиологије и сл. Повећана концентрација протеина може да стимулира раст, а пад концентрације протеина може да има и инхибицију процеса раста.

Међутим, такође могу да се у земљи и хипопротеинемија која је знатно мања. Посебну улогу у хемолимфи имају респираторни пигменти, који врше транспорт гасова. Концентрација глукозе у хемолимфи специфична је за сваку врсту, али је могуће варирање код једне исте јединке у зависности од њене физиолошке активности. Код пужа Helix pomatia откривена су два облика холинестараза: једна потпуно растворљива (FS) у хемолимфи и која чини 90% од укупне активности, и друга мембрански везана која је растворљива у детерџентима (DS). Присуство хемоцита још је једна од карактеристика хемолимфе. Они директно учествују у прехрањивању иестицања хемолимфе из организма на мјесту оштећења. Циљ рада је поређење карактеристика хемолимфе Helix pomatia из различитих станишта. Узорци виноградског пужа сакупљени су са два различита локалитета, од којих је један смјештен на планини Озрен, док се други налази у урбаном подручју Добоја. С обзиром на то да је хемолимфа једна од карактеристика хемолимфе, испитиване групе пужева сакупљених на подручју Добоја може се објасити присуством антропогеног загађења.

Кључне ријечи: Helix pomatia, виноградски пуж, ацетилхолинестераза, хемоцити

УВОД

Хемолимфа представља главну тјелесну течност пужева, чија је циркулација условљена ритмичким контракцијама срца и мишића стопала (Sembrat, 1981). Хемолимфа садржи бјеланчевине, пуферске системе, респираторни пигмент и обезбједује релативно стални састав унутрашње средине организма. Протеини обезбједују колоидно-осмотски притисак. Главну улогу међу протеинима у одржавању колоидно-осмотског притиска имају албумини, док је улога глобулина знатно мања. Концентрација протеина зависи од многих сполаљнихих и унутрашњих фактора који утичу на организам. Повећана концентрација протеина може да буде резултат одговора на присуство стресора који даље још увијек нису утврђени. Упркос сталном напретку у процесу стабилизације карактеристика хемоцита мекушаца, одговарајући систем њихове класификације и номенклатуре и даље не постоји. Ми смо на размазима хемолимфе идентификовали два типа хемоцита. Резултати нашег истраживања показују да постоје разлике у физиолошким параметрима код јединик које насељавају станишта са различитим условима.

Кључне ријечи: Helix pomatia, виноградски пуж, ацетилхолинестераза, хемоцити
детерзента и хемијских средстава, доводи до смањења концентрације протеина у стопалу и дигестивној жлијезди пужева (Grara и сар., 2012), али и шкољки (Jagtap, 2011). Посебну улогу у хемолимфи имају респираторни пигменти, који врше транспорт гасова, а растворени у хемолимфи или у ћелијама. Хемоцијанин је респираторни пигмент растворен у мекушаца (шкољка и два јона бакра). Количина бакра у саставу хемолимфе варира и зависи од степена активности животиње. Већа је код активних облика (сипе, хоботнице), него код тромијих животиња (пужа). Иначе, овај је пигмент у оксигенисаном облику плов дебе, а у дезоксигенисаном облику је безбојан (Давидовић, 1998). Концентрација глукозе у хемолимфи сенситивна је за сваку врсту, али је могуће варирање код једне исте јединке у зависности од њене физиолошке активности. Максимална количина глукозе када је животиња активна (најчешће током пролећа), док се магнитна концентрација биљежи у фази физиолошке пасивности. У тој фази сви физиолошки процеси сведени су на минимум, животиња се не храни активно већ користи депоноване хранљиве материје (гликоген депонован у ћелијама хепатопанкреаса код пуга). Глукоза која није потребна за производњу енергије складишти се у форми гликогена који представља потенцијални извор енергије. Найбољи дио гликогена преобала је у хепатопанкреасу и ћелијама мишића. Када се ове или друге ћелије засеје и гликогеном, вишак глукозе трансформише се у гликоген и складишти у виду гликоген-естира. Холинестеразе (ChE) представљају класу серинских хидролаза које катализују цијепање естера холина. Ови ензими класификују се као ацетил- (AChЕ), пропионил- (PChЕ) и бутирил-холинестераза (BChЕ). Код кичмењака су то мембрански везани ензими за које се сматра да имају улогу у терминацији трансмисије импулса на холинергичким синапсама. Проучавање холинестераза код бескичмењака показало је присуство веома солубилних облика у клељама. У клеткама солубилних облика у клењама солубилних облика, присуство холинестераза код бескичмењака показало је присуство веома солубилних облика у клењама.
Присуство хемоцита још је једна од карактеристика хемолимфе. Они директно учествују у спречавању истицања хемолимфе из организма на мјесту оштећења тј. лезије. На мјесту повреде или лезије сакупља се већи број хемоцита, који се после неког времена међусобно сљепљују (подсјећа на аглутинацију тромбоцита) и граде тзв. цитоморфометрије хемолимфе, и даље постоје проблеми у типологији хемоцита. Њихова класификација ослана се на различите критеријуме, од морфолошких до функционалних. Најчешће се хемоцити пужева диференцирају као агранулоцити (хијалиноцити) и гранулоцити са израженом способношћу фагоцитирања страног материјала. Одређивање типа и функције хемоцита мекушаца у природном окружењу од великог је значаја за проучавање основних ћелијских одговора на три основне варијабле: промјене у животној средини, употребу и утицај паразита (Martin и сар., 2007).

Узорци виноградског пужа сакупљени су са два различита локалитета, од којих је један смјештен на планини Озрен, док се други налази на обали ријеке Босне (урбано подручје града Добоја). Планина Озрен није изложена антропогеном загађењу. Локалитет на ком су сакупљене јединке може се сматрати примјером чистог, очуваног животног окружења, обраслог густом црногоричном шумом. С друге стране, подручје града Добоја под утицајем је различитих загађивача и антропогених притисака који карактеришу урбане средине: неадекватно збрињавање отпада, непостојање канализационе мреже на цијелом подручју општине као ни посјећивања за сакупљање и обраду отпадних вода. Велики проблем представљају и резиду загађивача заостале у земљишту након поплава које су задесиле град Добој 2014. године. Хемолимфа пужева подложна је различитим биотичким и абиотичким утицајима из животне средине, а њихове ефekte могуће је сагледати кроз поједине физиолошке параметре. Циљ рада је поређење карактеристика хемолимфе пужева са различитих станишта. Истраживање физиолошких параметара јединки исте врсте са различитих станишта која са одликну различитим условима, од посебног је значаја јер ови параметри представљају индиректне показатеље стања животне средине. Пужеви се сврставају у најбоље тести организме у екотоксиколошким студијама и процјени утицаја загађивача у копненим и акватичним срединама. У узорцима хемолимфе пужа урађена је карактеризација хемоцита, а утицај полутаната из животне средине сагледан је са аспекта утицаја на синтезу протеина и активност ацетилхолинестеразе.

МАТЕРИЈАЛ И МЕТОДЕ

Узорковање материјала обављено је у априлу 2016. године, на подручју града Добоја и планине Озрен. На подручју града Добоја, на обалама ријеке Босне, сакупљено је 26 јединки, док је на Озрену сакупљено укупно 16 јединки. Пужеви су стављени у тераријум, у ком су свакодневно хранjeni свежом, влажном травом. Изолација и анализ хемолимфе извршена је након аклимационог периода од 14 дана. Узорци хемолимфе сакупљени су из плућне вене пужа Helix pomatia. Концентрација протеина у узорцима одређена је методом по Lowry-у (1951). Одређивање активности ацетилхолинестеразе вршено је колориметријским методом по Елману (Ellman и сар., 1961). Узорци хемолимфе
су центрифугирани на 5000 обрта/мин, на температури од 4 степена. Уклоњен је супернатант, а фракција са исталоженим хемоцитима сакупљена је пишетом и од ње су направљени танки размази. Након бојења размаза комбинованим методом по Pappenheim-u, хемоцити су посматрани под имерционим објективом. Фотографије хемоцита направљене су помоћу камере Leica EC3. На размазима хемолимфе диференцирани су различити типови хемоцита. Димензије дуже и краће осе хемоцита одредеће су помоћу софтвера Leica Application Suite 3.0.

РЕЗУЛТАТИ

На локалитету Добоја, концентрација протеина у узорцима хемолимфе кретала се у интервалу од 5.45 mg/ml до 9.13 mg/ml. Код јединки сакупљених на локалитету планине Озрен забиљежена је нешто виша концентрација протеина (Табела 1), која није показивала сигнификантну разливку (p=0,432). Вриједности активности ацетилхолинестеразе изражене су у виду јединица промјене асорبانце (U) по маси протеина у узорку. Код пужева сакупљених на урбаном подручју града Добоја, најнижа вриједност активности AChE износила је 1400 U/mg, док је највиша забиљежена износила 2430 U/mg. Нешто више вриједности ензимске активности измјерене су у хемолимфи пужева сакупљених на планини Озрен. Код њих је минимална измјерена вриједност износила 1530 U/mg, а максимална 2910 U/mg (Табела 1).

Табела 1. Вриједности концентрације укупних протеина и активности ацетилхолин-естеразе у хемолимфи пужева са различитих локалитета (n – број јединки)

<table>
<thead>
<tr>
<th>Локалитет</th>
<th>Концентрација протеина (mg/ml)</th>
<th>Активност AChE (U/mg)</th>
<th>Концентрација протеина (mg/ml)</th>
<th>Активност AChE (U/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Добој, обала ријеке Босне (n=10)</td>
<td>7.09 ± 2.3</td>
<td>1774</td>
<td>7.44</td>
<td>2174</td>
</tr>
<tr>
<td>Планина Озрен (n=10)</td>
<td>7.91 ± 0.36</td>
<td>392.6</td>
<td>0.71</td>
<td>512.86</td>
</tr>
</tbody>
</table>

На танким размазима хемолимфе идентификована су два типа хемоцита. Средње вриједности димензија хемоцита приказане су у табели 2. Први тип обухвата крупније ћелије које имају способност да формирају псеудоподије на периферији. Показују висок афинитет ка киселим бојама па је цитоплазма интензивно обојена ружичастом бојом. Други тип обухвата ситније округле хемоците. Они су бројно знатно заступљенији у односу на претходни тип хемоцита. Једро је обојено плаво-љубичасто, а цитоплазма показује афинитет према базним бојама (Слика 1).

Табела 2. Средње вриједности димензија хемоцита идентификованих на размазима хемолимфе пужа Helix pomatia (n – број јединки)

<table>
<thead>
<tr>
<th>Хемоцити</th>
<th>Дужа оса хемоцита (µm) ± SD (n=10)</th>
<th>Краћа оса хемоцита (µm) ± SD (n=10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Тип 1</td>
<td>12.47±2.3</td>
<td>10.9±2.33</td>
</tr>
<tr>
<td>Тип 2</td>
<td>7.91±0.36</td>
<td>7.57±0.33</td>
</tr>
</tbody>
</table>
Ивана Тешић, Јасна Фришчић, Радослав Децић

90

Слика 1. Хемоцити идентификовани на размазима хемолимфе пужа Helix pomatia, а – Тип 1; б – Тип 2

ДИСКУСИЈА

Резултати истраживања виноградског пужа на подручју Добоја и планине Озрен, указују на постојање разлике у концентрацији протеина хемолимфе између јединки са ова два локалитета. Концентрација протеина виша је код јединки сакупљених на планини Озрен у односу на другу испитивану групу. Nielsen и сарадници (1983) покушали су да изврше карактеризацију протеина хемолимфе виноградског пужа Helix pomatia имуноелектрофоретским и хроматографским техникама. Најбројнији су били протеини који транспортују кисеоник, а и β хемоцијанин, а такође су забиљежена и најмање три нереспириаторна пигмента. У веома ниским концентрацијама пронађен је и хемаглутинин. Хемолимфа пужева не садржи протеин фибриноген тако да код њих нема процеса коагулације какав постоји код кичмењака. Резултати студија Adamovicz и Bolaczek (2003) указују на то да концентрација протеина зависи од многих спољашњих и унутрашњих фактора који утичу на организам. Повећана концентрација протеина посматрана је као одговор на стрес факторе који су сигнал за повећање синтезе протеина у хепатопанкреа. Међутим, хипопротеинемија често се јавља као последица смањене синтезе протеина услед инхибиторног дејства различитих полутаната. Радионуклиди у чађи и издувним гасовима изазивају деградацију протеина и блокирају процес њихове синтезе на нивоу рибозома (CIESM, 2002). Bislimi и сарадници (2013) показали су двоструко нижу вриједност укупних протеина у хемолимфи пужева изложених индустријском загађењу. Испитивања која су извели Srivatsan и сарадници 1992. године указују на то да до повећања концентрације протеина код пужева може доћи услед повећане продукције гамета. У њиховом раду најнижи ниво протеина нађен је у групи млађих јединки, док су највеће концентрације протеина установљене у хемолимфи најстаријих јединки.

Упоређивањем резултата истраживања виноградског пужа сакупљених на подручју града Добоја и планине Озрен, уочили смо постојање разлика у активности ацетилхолинестераза. На подручју планине Озрен активност AChE је за 23% виша него на другом локалитету. Иако је констатовано присуство одређених разлика, није утврђена статистички значајна разлика (p=0.420) у поређењу узорака из наведених локалитета. Ђорђевић и сарадници 2014. године испитивали су утицај органофосфатних једињења на
активност ацетилхолинестеразе. Органофосфатна јединица представљају иреверзибилне инхибиторе AChE и имају широку примјену у пољопривredi. Степен инхибиције ензима био је углавном већи код организама код којих су доказане више концентрације органофосфатних јединица.

Употреба биомаркера у евалуацији биолошких ефеката различитих хемијских полутаната значајно је дијагностичко средство у мониторингу загађења. Активности ацетилхолинестеразе представља биомаркер који има широку примјену у мониторингу загађења различитим неуротоксичним супстанцима, тешким металима, органофосфатним и карбаматним пестицидима, полиароматичним угљоводоницима итд.

Инактивација активности ацетилхолинестеразе код испитиване групе пужева сакупљених на подручју Добоја, може се повезати са високом концентрацијом пестицида као и присуством антропогеног загађења. Активности ацетилхолинестеразе је параметар од изузетног значаја за потврду присуства или одсуства пестицида, те се као таква користи за поуздан индикатор загађења.

Стање инхибиције AChE зависи од концентрације пестицида којој су оранизми изложени. У раду Иванца и сарадника (2009), чак и ниске концентрације тербуфоса (0.133 mg/L) који се сврстава у органофосфатне пестициде, изазива инхибицију ацетилхолинестеразе еритроцита бабушке (Carassius gibelio).

Ацетилхолинестераза примјењује се као специфичан биомаркер за процjenу изложености организма пестицидима, нарочито код мекушаца. Пужеви су веома важни чланови како копнених, тако и водених екосистема, те су као такви изложени бројним негативним утицајима. Због њиховог широког распрострањања, начина исхране, као и промјене понашања често се користе као циљни организми за процjenу загађења животне средине. Многе антропогене активности такође негативно дјелују на популације пужева.

На танким размазима хемолимфе идентификовали смо два различита типа хемоцита. Хемоцити мекушаца су весьма разноврсни, а њихова бројност и изглед мијеняју у зависности од услова животне средине и физиолошког стања животиње. Број и изглед хемоцита такође је подложен промјенама узвишење животиње, температуром, инфекцијама, нападима паразита, повредама, количином воде у ткивима и општим стањем организма. Стареје јединке могу имати двоструко већи број хемоцита у поређењу са млађим животињама (Adamovicz и Bolaczez, 2003). Претпоставља се да су укључена три механизма пролиферације: митоза, амитоза и фрагментација цитоплазме (Sminia, 1981). Хемоцити Gastropoda имају важну одбрамбену улогу у организму, као што је нпр. фагоцитоза, инкапсулација, нодулација, одбрана од паразита, коагулација и зарастање рана (Drozdowski и Zbikowska, 1994).

Мјесто настанка хемоцита, тип пролиферације и постојање матичних ћелија још увијек нису утврђени. Многе студије указују на то да су извори хемоцита код врсте Helix aspersa епител плашта и везивно ткиво, зидови проводних судова код Biomphalaria glabrata (Sminia, 1981), а код врста рода Doto везивно ткиво рено-кардијалног комплекса (Kress, 1968). Упрkos сталном напретку у проучавању карактеристика хемоцита мекушаца, одговарајући систем њихове класификације и номенклатуре и даље не постоји. Према неким ауторима, постоје два различита типа хемоцита (Sminia, 1981), док је...
Ивана Тешић, Јасна Фришчић, Радослав Декић

мишљење других аутора да су то само различити развојни стадијуми једног типа ћелије (Adamovicz и Bolaczek, 2003).

ЗАКЉУЧАК

У овом раду поређене су карактеристике хемолимфе врсте Helix pomatia који насељавају различита станишта. Узорци виноградског пужа сакупљени су на два различита локалитета, од којих је један смјештен на планини Озрен, док се други налази на обали ријеке Босне, на подручју града Добоја. Ова два проучавана локалитета карактерису се различитим комплексима абиявичких и биотичких услова станишта. Планина Озрен није изложен антропогеном загађењу. Локалитет на ком су сакупљене јединке може се сматрати примером чистог, очуваног животног окружења, обраслог густом црном шумом. С друге стране, подручје града Добоја под утицајем је различитих загађивача и антропогених притисака који карактерису урбану средину: неадекватно збрињавање отпада, непостојање канализационе мреже на целом подручју општине као ни постојање за сакупљање и обраду отпадних вода. Велики проблем представљају и резултати загађивача заостале у земљишту након поплава које су задесиле град Добој 2014. године. Резултати нашег истраживања показују да постоји разлика у физиолошким параметрима код јединки које насељавају станишта са различитим условима. Инактивација активности ацетилхолинестеразе код испитиване групе пужева сакупљених на подручју Добоја, може се повезати са присуством антропогеног загађења. Ацетилхолинестераза је параметар од изузетног значаја за потврду присуства или одсуства пестицида, те се као таква користи за поуздан индикатор загађења.

ЛИТЕРАТУРА

Примљено: 06.02.2017.
ИНДЕКС АУТОРА

Б
Биљана Лубарда, 75
Бојана Ђук, 75
Бранислав Гашић, 27

Г
Горан Шукало, 67
Гордана Ђурић, 27

Д
Драгојла Голуб, 67
Душица Пешевић, 3, 53

И
Ивана Тешић, 85

Ј
Јасмин Пашић, 27
Јасна Фришчић, 85
Јовица Сјеничић, 27

М
Маја Манојловић, 45
Маја Ранитовић, 67
Михајло Марковић, 3

Н
Наташа Марковић, 53

Р
Радослав Декић, 45, 85

С
Свјетлана Лолић, 45
Синиша Митрић, 3
Синиша Шкодрић, 75
Сњежана Хрчић, 27
Сунчица Бодружић, 27
САДРЖАЈ

ПЕРЗИСТЕНТНЕ ОРГАНСКЕ ЗАГАЂУЈУЋЕ СУПСТАНЦЕ (POPS) У БОСНИ И ХЕРЦЕГОВИНИ – ЗНАЧАЈ ПРИМЈЕНЕ ШТОКХОЛМСКЕ КОНВЕНЦИЈЕ
Душица Пешевић, Михајло Марковић, Синиша Митрић .. 3

ЗАШТИТА И УПРАВЉАЊЕ ФАУНОМ ЗАШТИЋЕНОГ ПОДРУЧЈА ЗА УПРАВЉАЊЕ РЕСУРСИМА „УНИВЕРЗИТЕТСКИ ГРАД“ У БАЊОЈ ЛУЦИ
Јовица Сјеничић, Бранислав Гашић, Гордана Ђурић, Сунчица Бодружић, Сњежана Хрчић, Јасмин Пашић .. 27

ПРОЦЈЕНА КВАЛИТЕТА ВОДЕ ВОДОТОКА НА ПОДРУЧЈУ ОПШТИНЕ МРКОЊИЋ ГРАД
Свјетлана Лолић, Радослав Декић, Маја Манојловић .. 45

КВАЛИТЕТ ВОДЕ АКУМУЛАЦИОНОГ ЈЕЗЕРА ДРЕНОВА
Душица Пешевић, Наташа Марковић .. 53

МОРФОМЕТРИЈА ДИГЕСТИВНОГ ТРАКТА НЕКИХ ЦИПРИНИДНИХ ВРСТА РИБА ИЗ РИЈЕКЕ САВЕ
Драгојла Голуб, Горан Шукало, Маја Ранитовић ... 67

ПРИЛОГ ПОЗНАВАЊУ ФЛОРЕ КЛИСУРЕ ЦРНЕ РИЈЕКЕ (РЕПУБЛИКА СРПСКА)
Биљана Лубарда, Синиша Шкондрић, Бојана Ђук ... 75

КАРАКТЕРИСТИКЕ ХЕМОЛИМФЕ ВИНОГРАДСКОГ ПУЖА (Helix pomatia) ИЗ РАЗЛИЧИТИХ СТАНИШТА
Ивана Чешић, Јасна Фршчић, Радослав Декић ... 85

ИНДЕКС АУТОРА... 95

САДРЖАЈ ... 96