УНИВЕРЗИТЕТУ У БАЊОЈ ЛУЦИ
ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ

Додипломске академске студије

<table>
<thead>
<tr>
<th>Назив предмета</th>
<th>Нуклеарна физика</th>
</tr>
</thead>
<tbody>
<tr>
<td>Шифра предмета</td>
<td>Статус предмета</td>
</tr>
<tr>
<td></td>
<td>обавезни</td>
</tr>
<tr>
<td>Наставници</td>
<td>Догоцент: др Драгана Тодоровић</td>
</tr>
<tr>
<td></td>
<td>Сарадник: мр Ола Ђорђић</td>
</tr>
</tbody>
</table>

Условљеност другим предметима:

Предмет: Основи структуре материје, Кванта механика I
Облик условљености: Положен испит

Циљеви изучавања предмета:

Упознање са основним особинама језгра као и моделима који објашњавају структуру језгра и интеракције у оквиру језгра. Такође у оквиру предмета изучавају се врсте радиоактивност распада, интеракције насталих честица у распаду са маестријом као и начин детекције датих распада.

Исходи учења (стечена зања):

Студент ће бити способан да:
- да детаљно опише језгро (наведе све особине језгра са описима) као и честице које су саставни делови језгра
- наведе основне модели језгра и претпоставке модела.
- детаљно опише закон радиоактивног распада и да разликује врсте радиоактивног распада
- опише интеракцију алфа и бета честица са материјом као и интеракцију гама зрачења и неутрона са материјом
- опише законе одржавања у нуклеарним реакцијама и да наведе врсте нуклеарних интеграција
- наведе и опише начине детекције јонизујућег зрачења помоћу инструмената као што су пропорционални бројачи, полупроводнички детектори, сцинтилациони детектори и детектори трагова.
- стечена теоријска знања примјени за решавање рачунских задатака.

Садржај предмета:

Основне особине језгра. Димензије језгра, електромеханички модели језгра. Модел језгра слабе и јаке интеракције.Врсте распада. Интеракција алфа честице са материјом. Теоријске основе алфа распада. Интеракција електрона са материјом. Бета распад. Ефикасни пресец у реакцијама. Закони одржавања у нуклеарним реакцијама. Интеракција гама зрачења са материјом.Интеракција неутрона са материјом. Нуклеарна физија и реактори. Детекција јонизујућег зрачења, пропорционалним бројачима, полупроводничким и сцинтилационим детекторима као и детекторима трагова. Магнетни спектрометар, Акелератор.

Методе наставе и савладавање градива:

Предавања, рачунске вежбе, лабораторијске вежбе

Литература:

Л. Мариначков, Основе нуклеарне физике, Универзитет у Новом Саду, Природно математички факултет, Департман за физику, Нови Сад 2010 .
Д. Поповић, Нуклеарна енергетика, Научна књига, Београд 1978.
P. Осмокровић, Основи нуклеарне физике, Академска мисао, Београд 2008.

Облици провјере знања и опјењивања:

Тестови, лабораторијске вежбе, писмени и усмени испит,

| Тест I + 2 + 3 30 (10 бодова по тесту) |
| Лабораторијске вежбе 10 Завршни испит 60 |

Посебна назнака за предмет:

Име и презиме наставника који је припремио податке: догоцент др Драгана Тодоровић